Communications in Mathematical Analysis

A Note on Carleman Estimates and Unique Continuation Property for the Boussinesq System

Youcef Mammeri

Full-text: Open access

Abstract

A Carleman estimates is established to prove a unique continuation property of the solution of the Boussinesq system. We can prove that if the solution of the Boussinesq systems vanishes in an open subset, then this solution is identically equal to zero in the horizontal component of the open subset.

Article information

Source
Commun. Math. Anal., Volume 15, Number 2 (2013), 29-38.

Dates
First available in Project Euclid: 9 August 2013

Permanent link to this document
https://projecteuclid.org/euclid.cma/1376053389

Mathematical Reviews number (MathSciNet)
MR3093579

Zentralblatt MATH identifier
1277.35086

Subjects
Primary: 35B60: Continuation and prolongation of solutions [See also 58A15, 58A17, 58Hxx] 35Q53: KdV-like equations (Korteweg-de Vries) [See also 37K10]

Keywords
Boussinesq system Carleman estimates UCP Treves' inequality

Citation

Mammeri , Youcef. A Note on Carleman Estimates and Unique Continuation Property for the Boussinesq System. Commun. Math. Anal. 15 (2013), no. 2, 29--38. https://projecteuclid.org/euclid.cma/1376053389


Export citation

References

  • T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272 no. 1220 (1972), pp 47–78.
  • J.L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory. J. Nonlinear Sci. 12 no. 4 (2002), pp 283–318.
  • J.L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small amplitude long waves in nonlinear dispersive media. II. The nonlinear theory. Nonlinearity 17 no. 3 (2004), pp 925–952.
  • J. Bourgain, On the compactness of the support of solutions of dispersive equations. Internat. Math. Res. Notices, 9 (1997), pp 437–447.
  • J. V. Boussinesq, Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal. C.R. Acad. Sci. Paris 73 (1871), pp 256–260.
  • T. Carleman, Sur les systemes linéaires aux dérivées partielles du premier ordre à deux variables. C. R. Acad. Sci. Paris, 197 (1933), pp 471–474.
  • M. Davilla and G. Perla Menzala, Unique continuation for the Benjamin-Bona-Mahony and Boussinesq's equations. Nonlinear differ. equ. appl. 5 (1998), pp 367–382.
  • L. Hormander, Linear Partial Differential Operators, Springer.Verlag, Berlin/Heidelberg/New York, 1969.
  • A. Kozakevicius, O. Vera, On the unique continuation property for a nonlinear dispersive system. EJQTDE, 14 (2005), pp 1–23.
  • Y. Mammeri, Unique continuation property for Boussinesq-type systems. Commun. Math. Anal. 9 no. 1 (2010), pp 121–127.
  • L. Nirenberg, Uniqueness of Cauchy problems for differential equations with constant leading coefficient. Comm. Pure Appl. Math., 10 (1957), pp 89-105.
  • J.-C. Saut, B. Scheurer, Unique continuation for some evolution equations. J. Diff. Eqs., 66 (1987), pp 118-139.
  • F. Treves, Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, N. York, London, Paris, 1966.