Communications in Mathematical Analysis

Differences of Composition Operators on Weighted Banach Spaces of Holomorphic Functions Defined on the Unit Ball of a Complex Banach Space

Elke Wolf

Full-text: Open access

Abstract

We investigate differences of composition operators acting between weighted spaces of holomorphic functions defined on the open unit ball of a Banach space. We give necessary and sufficient conditions for such operators to be bounded resp. compact.

Article information

Source
Commun. Math. Anal., Volume 15, Number 1 (2013), 1-10.

Dates
First available in Project Euclid: 18 July 2013

Permanent link to this document
https://projecteuclid.org/euclid.cma/1374153491

Mathematical Reviews number (MathSciNet)
MR3082260

Zentralblatt MATH identifier
1275.47056

Subjects
Primary: 47B33, 47B38

Keywords
differences of composition operators weighted Banach spaces of holomorphic functions on the unit ball of a Banach space boundedness compactness

Citation

Wolf, Elke. Differences of Composition Operators on Weighted Banach Spaces of Holomorphic Functions Defined on the Unit Ball of a Complex Banach Space. Commun. Math. Anal. 15 (2013), no. 1, 1--10. https://projecteuclid.org/euclid.cma/1374153491


Export citation

References

  • J. M. Anderson and J. Duncan, Duals of Banach spaces of entire functions. Glasgow Math. J. 32 (1990), pp 215-220.
  • K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions. J. Austral. Math. Soc. (Series A) 54(1993), pp 70-79.
  • K. D. Bierstedt and J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions. Studia Math. 127 (1998), pp 137-168.
  • K. D. Bierstedt and R. Meise and W. H. Summers, A projective description of weighted inductive limits. Trans. Amer. Math. Soc. 272 (1982), pp 107-160.
  • J. Bonet and P. Domański and M. Lindström, Essential norm and weak compactness of composition operators on weighted Bnach spaces of analytic functions. Canad. Math. Bull. 42 (1999), pp 139-148.
  • J. Bonet and P. Domański and M. Lindström and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions. J. Austral. Math. Soc. (Seris A) 64 (1998), pp 101-118.
  • J. Bonet and M. Lindström and E. Wolf, Differences of composition operators between weighted Banach spaces of holomorphic functions. J. Austral. Math. Soc. 84 (2008),pp 9-20.
  • J. Bonet and M. Lindström and E. Wolf, Isometric weighted composition operators on weighted Banach spaces of type $H^{\infty}$. Proc. Amer. Math. Soc. 136 (2008), pp 4267-4273.
  • M. D. Contreras and A. G. Hernández-Díaz, Weighted composition operators in weighted Banach spaces of analytic functions. J. Austral. Math. Soc. (Series A) 69 (2000), pp 41-60.
  • C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, 1995.
  • P. Domański and M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions. Ann. Pol. Math. 79 (2002), pp 233-264.
  • A. Galbis, Weighted Banach spaces of entire functions. Arch. Math. 62 (1994), pp 58-64.
  • D. Garcia and M. Maestre and P. Rueda, Weighted spaces of holomorphic functions on Banach spaces. Studia Math. 138 (2000), pp 1-24.
  • D. Garcia and M. Maestre and P. Sevilla-Peris, Composition operators between weighted spaces of holomorphic functions on Banach spaces. Ann. Acad. Sci. Fenn. Math. 29 (2004), pp 81-98.
  • T. Hosokawa and K. Izuchi and D. Zheng, Isolated points and essential components of composition operators on $H^{\infty}$. Proc. Amer. Math. Soc. 130 (2002), pp 1765-1773.
  • W. Kaballo, Lifting-Probleme für $H^{\infty}$-Funktionen. Arch. Math 34 (1980), pp 540-549.
  • M. Lindström and E. Wolf, Essential norm of differences of weighted composition operators. Monatsh. Math. 153 (2008), pp 133-143.
  • W. Lusky, On the structure of $Hv_0(D)$ and $hv_0(D)$. Math. Nachr. 159 (1992), pp 279-289.
  • W. Lusky, On weighted spaces of harmonic and holomorphic functions. J. London Math. Soc. 51 (1995), pp 309-320.
  • B. MacCluer and S. Ohno and R. Zhao, Topological structure of the space of composition operators on $H^{\infty}$. Integral Equations Operator Theory 40 (2001), pp 481-494.
  • A. Montes-Rodríguez, Weighted composition operators on weighted Banach spaces of analytic funtions. J. London Math. Soc. (2) 61 (2000), pp 872-884.
  • P. Nieminen, Compact differences of composition operators on Bloch and Lipschitz spaces. Comput. Methods Funct. Theory 7 (2007), pp 325-344.
  • L. A. Rubel and A.L. Shields, The second duals of certain spaces of analytic functions. J. Austral. Math. Soc. 11 (1970), pp 276-280.
  • J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.
  • A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of harmonic functions. J. Reine Angew. Math. 299/300 (1978), pp 256-279.
  • A. L. Shields and D.L. Williams, Bounded projections and the growth of harmonic conjugates in the disc. Michigan Math. J. 29 (1982), pp 3-25.
  • P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge, 1991.