Communications in Mathematical Analysis
- Commun. Math. Anal.
- Volume 14, Number 1 (2013), 104-117.
Nonlinear Fractional Order Riemman-Liouville Volterra-Stieltjes Partial Integral Equations on Unbounded Domains
S. Abbas and M. Benchohra
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
This paper deals with the existence and the stability of solutions of a class of fractional order functional Riemann-Liouville Volterra-Stieltjes partial integral equations. Our results are obtained by using an extension of the Burton-Kirk fixed point theorem in the case of an unbounded domain.
Article information
Source
Commun. Math. Anal. Volume 14, Number 1 (2013), 104-117.
Dates
First available in Project Euclid: 25 March 2013
Permanent link to this document
https://projecteuclid.org/euclid.cma/1364216233
Mathematical Reviews number (MathSciNet)
MR3040884
Zentralblatt MATH identifier
1277.26009
Subjects
Primary: 26A33
Secondary: , 45D05 , 45G05 , 45M10
Keywords
Volterra-Stieltjes quadratic partial integral equation left-sided mixed Riemann-Liouville integral of fractional order unbounded domain Fréchet space stability solution fixed point
Citation
Abbas , S.; Benchohra , M. Nonlinear Fractional Order Riemman-Liouville Volterra-Stieltjes Partial Integral Equations on Unbounded Domains. Commun. Math. Anal. 14 (2013), no. 1, 104--117.https://projecteuclid.org/euclid.cma/1364216233
References
- S. Abbas, D. Baleanu and M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations, Adv. Difference Equ. 2012, 19 pages doi:10.1186/1687-1847-2012-62. Mathematical Reviews (MathSciNet): MR2958362
- S. Abbas and M. Benchohra, Impulsive partial functional integro-differential equations of fractional order, Commun. Appl. Anal. 16 (2012), 249-260.
- S. Abbas and M. Benchohra, Nonlinear quadratic Volterra Riemann-Liouville integral equations of fractional order, Nonlinear Anal. Forum, 17 (2012), 1-9. Mathematical Reviews (MathSciNet): MR3013781
- S. Abbas, M. Benchohra and J. R. Graef, Integro-differential equations of fractional order, Differ. Equ. Dyn. Syst. 20 (2012), 139-148. Mathematical Reviews (MathSciNet): MR2929757
Zentralblatt MATH: 06111617
Digital Object Identifier: doi:10.1007/s12591-012-0110-1 - S. Abbas, M. Benchohra and J. Henderson, Global asymptotic stability of solutions of nonlinear quadratic Volterra integral equations of fractional order, Comm. Appl. Nonlinear Anal. 19 (2012), 79-89.
- S. Abbas, M. Benchohra and J. Henderson, Asymptotic behavior of solutions of nonlinear fractional order Riemann-Liouville Volterra-Stieltjes Quadratic integral equations, Int. E. J. Pure Appl. Math. 4 (3) (2012), 195-209. Mathematical Reviews (MathSciNet): MR2945011
- S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
- S. Abbas, M. Benchohra and J.J. Nieto, Global uniqueness results for fractional order partial hyperbolic functional differential equations, Adv. Difference Equ. 2011, Art. ID 379876, 25 pp.
- S. Abbas, M. Benchohra and A. N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations, Fract. Calc. Appl. Anal. 15 (2) (2012), 168-182. Mathematical Reviews (MathSciNet): MR2897771
Digital Object Identifier: doi:10.2478/s13540-012-0012-5 - B. Ahmad, J.J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear langeving equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl. 13 (2012), 599-606. Mathematical Reviews (MathSciNet): MR2846866
Digital Object Identifier: doi:10.1016/j.nonrwa.2011.07.052 - C. Avramescu, Some remarks on a fixed point theorem of Krasnoselskii, Electron. J. Qual. Theory Differ. Equ. (2003), No. 5, 15 pp.
- D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. Mathematical Reviews (MathSciNet): MR2894576
- J. Banaś and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal. 69 (7) (2008), 1945-1952. Mathematical Reviews (MathSciNet): MR2437598
- J. Banaś and T. Zając, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011), 375-387. Mathematical Reviews (MathSciNet): MR2735528
Zentralblatt MATH: 1210.45005
Digital Object Identifier: doi:10.1016/j.jmaa.2010.09.004 - M. A. Darwish, J. Henderson and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional integral equations with linear modification of the argument, Bull. Korean Math. Soc. 48 (3) (2011), 539-553. Mathematical Reviews (MathSciNet): MR2827764
Zentralblatt MATH: 1220.45011
Digital Object Identifier: doi:10.4134/BKMS.2011.48.3.539 - K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, 2010.
- K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248. Mathematical Reviews (MathSciNet): MR1876137
Zentralblatt MATH: 1014.34003
Digital Object Identifier: doi:10.1006/jmaa.2000.7194 - M. Frigon and A. Granas, Résultats de type Leray-Schauder pour des contractions sur des espaces de Fréchet, Ann. Sci. Math. Québec 22, (2), (1998), 161-168. Mathematical Reviews (MathSciNet): MR1677243
- A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006.
- K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
- I. P. Natanson, Theory of Functions of a Real Variable, Ungar, New York, 1960.
- I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999. Mathematical Reviews (MathSciNet): MR1658022
- W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1970.
- S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. Mathematical Reviews (MathSciNet): MR1347689
- V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010. Mathematical Reviews (MathSciNet): MR2796453
- A. N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (2004), 318-325.Mathematical Reviews (MathSciNet): MR2151816
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Existence and stability of nonlinear, fractional order Riemann-Liouville Volterra-Stieltjes multi-delay integral equations
Abbas, Saïd and Benchohra, Mouffak, Journal of Integral Equations and Applications, 2013 - Asymptotic behavior of fractional order Riemann-Liouville Volterra-Stieltjes integral equations
Abbas, Saïd, Benchohra, Mouffak, Slimani, Boualem A., and Trujillo, Juan J., Journal of Integral Equations and Applications, 2015 - Existence and Characterization of Solutions of Nonlinear Volterra-Stieltjes Integral Equations in Two Variables
Darwish, Mohamed Abdalla and Banaś, Józef, Abstract and Applied Analysis, 2013
- Existence and stability of nonlinear, fractional order Riemann-Liouville Volterra-Stieltjes multi-delay integral equations
Abbas, Saïd and Benchohra, Mouffak, Journal of Integral Equations and Applications, 2013 - Asymptotic behavior of fractional order Riemann-Liouville Volterra-Stieltjes integral equations
Abbas, Saïd, Benchohra, Mouffak, Slimani, Boualem A., and Trujillo, Juan J., Journal of Integral Equations and Applications, 2015 - Existence and Characterization of Solutions of Nonlinear Volterra-Stieltjes Integral Equations in Two Variables
Darwish, Mohamed Abdalla and Banaś, Józef, Abstract and Applied Analysis, 2013 - Positive Solutions for Nonlinear Fractional Differential Equations with Boundary Conditions Involving Riemann-Stieltjes Integrals
Jiang, Jiqiang, Liu, Lishan, and Wu, Yonghong, Abstract and Applied Analysis, 2012 - Solvability of Nonlinear Integral Equations of Volterra Type
Liu, Zeqing, Lee, Sunhong, and Kang, Shin Min, Abstract and Applied Analysis, 2012 - On attractivity and asymptotic stability of solutions
of a quadratic Volterra integral equation of fractional order
Rzepka, Beata, Topological Methods in Nonlinear Analysis, 2008 - Existence of Positive Solution for Semipositone Fractional Differential Equations Involving Riemann-Stieltjes Integral Conditions
Wang, Wei and Huang, Li, Abstract and Applied Analysis, 2012 - Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem
Xie, Wenzhe, Xiao, Jing, and Luo, Zhiguo, Abstract and Applied Analysis, 2014 - A Note on Fractional Equations of Volterra Type with Nonlocal Boundary
Condition
Liu, Zhenhai and Wang, Rui, Abstract and Applied Analysis, 2013 - Existence and Uniqueness Results for Fractional Differential Equations with
Riemann-Liouville Fractional Integral Boundary Conditions
Abbas, Mohamed I., Abstract and Applied Analysis, 2015


