Communications in Mathematical Analysis

Nonlinear Fractional Order Riemman-Liouville Volterra-Stieltjes Partial Integral Equations on Unbounded Domains

S. Abbas and M. Benchohra

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This paper deals with the existence and the stability of solutions of a class of fractional order functional Riemann-Liouville Volterra-Stieltjes partial integral equations. Our results are obtained by using an extension of the Burton-Kirk fixed point theorem in the case of an unbounded domain.

Article information

Source
Commun. Math. Anal. Volume 14, Number 1 (2013), 104-117.

Dates
First available in Project Euclid: 25 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.cma/1364216233

Mathematical Reviews number (MathSciNet)
MR3040884

Zentralblatt MATH identifier
1277.26009

Subjects
Primary: 26A33
Secondary: , 45D05 , 45G05 , 45M10

Keywords
Volterra-Stieltjes quadratic partial integral equation left-sided mixed Riemann-Liouville integral of fractional order unbounded domain Fréchet space stability solution fixed point

Citation

Abbas , S.; Benchohra , M. Nonlinear Fractional Order Riemman-Liouville Volterra-Stieltjes Partial Integral Equations on Unbounded Domains. Commun. Math. Anal. 14 (2013), no. 1, 104--117.https://projecteuclid.org/euclid.cma/1364216233


Export citation

References

  • S. Abbas, D. Baleanu and M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations, Adv. Difference Equ. 2012, 19 pages doi:10.1186/1687-1847-2012-62.
  • S. Abbas and M. Benchohra, Impulsive partial functional integro-differential equations of fractional order, Commun. Appl. Anal. 16 (2012), 249-260.
  • S. Abbas and M. Benchohra, Nonlinear quadratic Volterra Riemann-Liouville integral equations of fractional order, Nonlinear Anal. Forum, 17 (2012), 1-9.
  • S. Abbas, M. Benchohra and J. R. Graef, Integro-differential equations of fractional order, Differ. Equ. Dyn. Syst. 20 (2012), 139-148.
  • S. Abbas, M. Benchohra and J. Henderson, Global asymptotic stability of solutions of nonlinear quadratic Volterra integral equations of fractional order, Comm. Appl. Nonlinear Anal. 19 (2012), 79-89.
  • S. Abbas, M. Benchohra and J. Henderson, Asymptotic behavior of solutions of nonlinear fractional order Riemann-Liouville Volterra-Stieltjes Quadratic integral equations, Int. E. J. Pure Appl. Math. 4 (3) (2012), 195-209.
  • S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
  • S. Abbas, M. Benchohra and J.J. Nieto, Global uniqueness results for fractional order partial hyperbolic functional differential equations, Adv. Difference Equ. 2011, Art. ID 379876, 25 pp.
  • S. Abbas, M. Benchohra and A. N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations, Fract. Calc. Appl. Anal. 15 (2) (2012), 168-182.
  • B. Ahmad, J.J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear langeving equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl. 13 (2012), 599-606.
  • C. Avramescu, Some remarks on a fixed point theorem of Krasnoselskii, Electron. J. Qual. Theory Differ. Equ. (2003), No. 5, 15 pp.
  • D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012.
  • J. Banaś and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal. 69 (7) (2008), 1945-1952.
  • J. Banaś and T. Zając, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011), 375-387.
  • M. A. Darwish, J. Henderson and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional integral equations with linear modification of the argument, Bull. Korean Math. Soc. 48 (3) (2011), 539-553.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, 2010.
  • K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248.
  • M. Frigon and A. Granas, Résultats de type Leray-Schauder pour des contractions sur des espaces de Fréchet, Ann. Sci. Math. Québec 22, (2), (1998), 161-168.
  • A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006.
  • K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  • I. P. Natanson, Theory of Functions of a Real Variable, Ungar, New York, 1960.
  • I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1970.
  • S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
  • A. N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (2004), 318-325.