Communications in Mathematical Analysis

On long-time decay for modified Klein-Gordon equation

E. Kopylova

Full-text: Open access

Abstract

We obtain a dispersive long-time decay in weighted energy norms for solutions of the Klein-Gordon equation in a moving frame. The decay extends the results of Jensen, Kato and Murata for the equations of the Schrödinger type. We modify the approach to make it applicable to relativistic equations.

Article information

Source
Commun. Math. Anal., Conference 3 (2011), 137-152.

Dates
First available in Project Euclid: 25 February 2011

Permanent link to this document
https://projecteuclid.org/euclid.cma/1298670009

Mathematical Reviews number (MathSciNet)
MR2772058

Zentralblatt MATH identifier
1213.35106

Subjects
Primary: 35L10: Second-order hyperbolic equations 34L25: Scattering theory, inverse scattering
Secondary: 47A40 81U05

Keywords
Klein-Gordon equation relativistic equations resolvent spectral representation weighted spaces Born series convolution

Citation

Kopylova, E. On long-time decay for modified Klein-Gordon equation. Commun. Math. Anal. (2011), no. 3, 137--152. https://projecteuclid.org/euclid.cma/1298670009


Export citation

References

  • S. Agmon, Spectral properties of Schrödinger operator and scattering theory. Ann. Scuola Norm. Sup. Pisa, Ser. IV, 2 (1975), pp 151-218.
  • P. M. Bleher, On operators depending meromorphically on a parameter. Moscow Univ. Math. Bull. 24 (1972), pp 21-26.
  • I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators. American Mathematical Society, Providence, RI 1969.
  • A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave function. Results in $L^2(\R^{m}),\;m\ge 5$. Duke Math. J. 47 (1980), pp 57-80.
  • A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave function. Results in $L^2(\R^4)$. J. Math. Anal. Appl. 101 (1984), pp 491-513.
  • A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46 (1979), pp 583-611.
  • A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds. Rev. Math. Phys. 13 (2001), No. 6, pp 717-754.
  • A. Komech and E. Kopylova, Weighted energy decay for 1D Klein-Gordon equation. Comm. PDE 35 (2010), No. 2, pp 353-374.
  • M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations. J. Funct. Anal. 49 (1982), pp 10-56.
  • G. N. Watson, Bessel Functions. Cambridge 1922.