Communications in Applied Mathematics and Computational Science

A balancing domain decomposition method by constraints for advection-diffusion problems

Xuemin Tu and Jing Li

Full-text: Open access


The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A preconditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially subassembled interface problem is solved. A convergence rate estimate for the GMRES iteration is established for the cases where the advection is not strong, under the condition that the mesh size is small enough. The estimate deteriorates with a decrease of the viscosity and for fixed viscosity it is independent of the number of subdomains and depends only slightly on the subdomain problem size. Numerical experiments for several two-dimensional advection-diffusion problems illustrate the fast convergence of the proposed algorithm for both diffusion-dominated and advection-dominated cases.

Article information

Commun. Appl. Math. Comput. Sci., Volume 3, Number 1 (2008), 25-60.

Received: 6 June 2007
Revised: 27 December 2007
Accepted: 4 January 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 65N30: Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods 65N55: Multigrid methods; domain decomposition

BDDC nonsymmetric domain decomposition advection-diffusion Robin boundary condition


Tu, Xuemin; Li, Jing. A balancing domain decomposition method by constraints for advection-diffusion problems. Commun. Appl. Math. Comput. Sci. 3 (2008), no. 1, 25--60. doi:10.2140/camcos.2008.3.25.

Export citation


  • Yves Achdou, Caroline Japhet, Patric Le Tallec, Frédéric Nataf, François Rogier, and Marina Vidrascu, Domain decomposition methods for non-symmetric problems, Domain Decomposition Methods in Sciences and Engineering: Eleventh International Conference London, UK (Choi-Hong Lai, Petter E. Bjørstad, Mark Cross, and Olof B. Widlund, eds.),, 1999, Greenwich, England, July 20–24, 1998, pp. 3–17.
  • Yves Achdou, Patrick Le Tallec, Frédéric Nataf, and Marina Vidrascu, A domain decoposition preconditioner for an advection-diffusion problem, Comp. Methods Appl. Mech. Engrg 184 (2000), 145–170.
  • Yves Achdou and Frédéric Nataf, A Robin-Robin preconditioner for an advection-diffusion problem, C. R. Acad. Sci. Paris 325, Série I (1997), 1211–1216.
  • Susanne C. Brenner and Li-Yeng Sung, BDDC and FETI-DP without matrices or vectors, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 8, 1429–1435.
  • Xiao-Chuan Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer. Math. 60 (1991), no. 1, 41–61.
  • Xiao-Chuan Cai and Olof Widlund, Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Statist. Comput. 13 (1992), no. 1, 243–258.
  • ––––, Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems, SIAM J. Numer. Anal. 30 (1993), no. 4, 936–952.
  • Claudio Carlenzoli and Alfio Quarteroni, Adaptive domain decomposition methods for advection-diffusion problems, The IMA Volumes in Mathematics and its Applications, Springer Verlag 75 (1995), 165–186.
  • Marie-Claude Ciccoli, Adaptive domain decomposition algorithms and finite volume/finite element approximation for advection-diffusion equations, J. Sci. Comput. 11 (1996), no. 4, 299–341.
  • Duilio Conceiçao, Balancing domain decomposition preconditioners for non-symmetric problems, Tech. Report Serie C 46, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil, May 2006.
  • Jean-Michel Cros, A preconditioner for the Schur complement domain decomposition method, Domain decomposition methods in science and engineering, Proceedings of the 14th International Conference on Domain Decomposition Methods, National Autonomous University of Mexico, 2003, pp. 373–380.
  • Clark R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization, SIAM J. Sci Comput. 25 (2003), no. 1, 246–258.
  • ––––, A substructuring preconditioner for nearly incompressible elasticity problems, Tech. Report SAND2004-5393, Sandia National Laboratories, Albuquerque, New Mexico, October 2004.
  • Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20 (2) (1983), 345–357.
  • Charbel Farhat, Michel Lesoinne, Patrick Le Tallec, Kendall Pierson, and Daniel Rixen, FETI-DP: A dual-primal unified FETI method – part I: A faster alternative to the two-level FETI method, Internat. J. Numer. Methods Engrg. 50 (2001), 1523–1544.
  • Charbel Farhat and Jing Li, An iterative domain decomposition method for the solution of a class of indefinite problems in computational structural dynamics, Appl. Numer. Math. 54 (2005), 150–166.
  • Yannis Fragakis and Manolis Papadrakakis, The mosaic of high performance domain decomposition methods for structural mechanics: Formulation, interrelation and numerical efficiency of primal and dual methods, Comput. Methods Appl. Mech. Engrg 192 (2003), no. 35–36, 3799–3830.
  • Fabio Gastaldi, Lucia Gastaldi, and Alfio Quarteroni, Adaptive domain decomposition methods for advection dominated equations, East-West J. Numer. Math. 4 (1996), no. 3, 165–206.
  • Jayadeep Gopalakrishnan and Joseph E. Pasciak, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations, Math. Comp. 72 (2003), no. 241, 1–15.
  • Thomas J.R. Hughes, Leopoldo P. Franca, and Gregory M. Hulbert, A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg. 73 (1989), no. 2, 173–189.
  • Axel Klawonn and Olof B. Widlund, Dual-primal FETI methods for linear elasticity, Comm. Pure Appl. Math. 59 (2006), no. 11, 1523–1572.
  • Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal. 40 (2002), no. 1, 159–179.
  • Jing Li and Xuemin Tu, Convergence analysis of a balancing domain decomposition method for solving interior Helmholtz equations, Tech. Report LBNL-62618, Lawrence Berkeley National Laboratory, May 2007.
  • Jing Li and Olof B. Widlund, BDDC algorithms for incompressible Stokes equations, SIAM J. Numer. Anal. 44 (2006), no. 6, 2432–2455.
  • ––––, FETI–DP, BDDC, and Block Cholesky Methods, Internat. J. Numer. Methods Engrg. 66 (2006), 250–271.
  • ––––, On the use of inexact subdomain solvers for BDDC algorithms, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 8, 1415–1428.
  • Jan Mandel and Clark R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization, Numer. Linear Algebra Appl. 10 (2003), no. 7, 639–659.
  • Jan Mandel, Clark R. Dohrmann, and Radek Tezaur, An algebraic theory for primal and dual substructuring methods by constraints, Appl. Numer. Math. 54 (2005), no. 2, 167–193.
  • Frédéric Nataf and François Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm, Math. Models Methods Appl. Sci. 5 (1995), no. 1, 67–93.
  • Alfio Quarteroni and Alberto Valli, Domain decomposition methods for partial differential equations, Oxford Science Publications, 1999.
  • Marcus Sarkis and Daniel B. Szyld, Optimal left and right additive Schwarz preconditioning for minimal residual methods with Euclidean and energy norms, Comput. Methods Appl. Mech. Engrg. 196 (2007), 1507–1514.
  • Andrea Toselli, FETI domain decomposition methods for scalar advection-diffusion problems., Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 43-44, 5759–5776.
  • Andrea Toselli and Olof B. Widlund, Domain Decomposition Methods - Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34, Springer Verlag, Berlin, 2005.
  • R. Loredana Trotta, Multidomain finite elements for advection-diffusion equations, Appl. Numer. Math. 21 (1996), no. 1, 91–118.
  • Xuemin Tu, A BDDC algorithm for a mixed formulation of flows in porous media, Electron. Trans. Numer. Anal. 20 (2005), 164–179.
  • ––––, BDDC domain decomposition algorithms: Methods with three levels and for flow in porous media, Ph.D. thesis, Courant Institute, New York University, January 2006, TR2005-879, Department of Computer Science, Courant Institute.
  • ––––, A BDDC algorithm for flow in porous media with a hybrid finite element discretization, Electron. Trans. Numer. Anal. 26 (2007), 146–160.
  • Panayot S. Vassilevski, Preconditioning nonsymmetric and indefinite finite element matrices, J. Numer. Linear Algebra Appl. 1 (1992), no. 1, 59–76.
  • Jinchao Xu, Theory of multilevel methods, Ph.D. thesis, Cornell University, May 1989.
  • ––––, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J. Numer. Anal. 29 (1992), no. 2, 303–319.