Communications in Applied Mathematics and Computational Science

Low Mach number fluctuating hydrodynamics of diffusively mixing fluids

Aleksandar Donev, Andy Nonaka, Yifei Sun, Thomas Fai, Alejandro Garcia, and John Bell

Full-text: Open access

Abstract

We formulate low Mach number fluctuating hydrodynamic equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with different density and transport coefficients. These equations represent a coarse-graining of the microscopic dynamics of the fluid molecules in both space and time and eliminate the fluctuations in pressure associated with the propagation of sound waves by replacing the equation of state with a local thermodynamic constraint. We demonstrate that the low Mach number model preserves the spatiotemporal spectrum of the slower diffusive fluctuations. We develop a strictly conservative finite-volume spatial discretization of the low Mach number fluctuating equations in both two and three dimensions and construct several explicit Runge–Kutta temporal integrators that strictly maintain the equation-of-state constraint. The resulting spatiotemporal discretization is second-order accurate deterministically and maintains fluctuation-dissipation balance in the linearized stochastic equations. We apply our algorithms to model the development of giant concentration fluctuations in the presence of concentration gradients and investigate the validity of common simplifications such as neglecting the spatial nonhomogeneity of density and transport properties. We perform simulations of diffusive mixing of two fluids of different densities in two dimensions and compare the results of low Mach number continuum simulations to hard-disk molecular-dynamics simulations. Excellent agreement is observed between the particle and continuum simulations of giant fluctuations during time-dependent diffusive mixing.

Article information

Source
Commun. Appl. Math. Comput. Sci., Volume 9, Number 1 (2014), 47-105.

Dates
Received: 26 November 2013
Revised: 14 January 2014
Accepted: 14 January 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.camcos/1513732105

Digital Object Identifier
doi:10.2140/camcos.2014.9.47

Mathematical Reviews number (MathSciNet)
MR3212867

Zentralblatt MATH identifier
1317.76087

Subjects
Primary: 76T99: None of the above, but in this section
Secondary: 65M08: Finite volume methods

Keywords
fluctuating hydrodynamics low Mach expansion molecular dynamics giant fluctuations

Citation

Donev, Aleksandar; Nonaka, Andy; Sun, Yifei; Fai, Thomas; Garcia, Alejandro; Bell, John. Low Mach number fluctuating hydrodynamics of diffusively mixing fluids. Commun. Appl. Math. Comput. Sci. 9 (2014), no. 1, 47--105. doi:10.2140/camcos.2014.9.47. https://projecteuclid.org/euclid.camcos/1513732105


Export citation

References

  • A. S. Almgren, A. J. Aspden, J. B. Bell, and M. L. Minion, On the use of higher-order projection methods for incompressible turbulent flow, SIAM J. Sci. Comput. 35 (2013), no. 1, B25–B42.
  • A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations, J. Comput. Phys. 142 (1998), no. 1, 1–46.
  • P. J. Atzberger, Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations, J. Comput. Phys. 230 (2011), no. 8, 2821–2837.
  • D. Bedeaux and P. Mazur, Renormalization of the diffusion coefficient in a fluctuating fluid, I, Physica 73 (1974), no. 3, 431–458.
  • J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys. 85 (1989), no. 2, 257–283.
  • J. B. Bell, A. L. Garcia, and S. A. Williams, Computational fluctuating fluid dynamics, ESAIM Math. Model. Numer. Anal. 44 (2010), no. 5, 1085–1105.
  • L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev. 39 (2010), no. 3, 1073–1095.
  • K. Braeckmans, L. Peeters, N. N. Sanders, S. C. De Smedt, and J. Demeester, Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope, Biophys. J. 85 (2003), no. 4, 2240–2252.
  • D. Brogioli, Giant fluctuations in diffusion in freely-suspended liquid films, preprint, 2011.
  • M. Cai, A. J. Nonaka, J. B. Bell, B. E. Griffith, and A. Donev, Efficient variable-coefficient finite-volume Stokes solvers, preprint, 2013.
  • F. Croccolo, H. Bataller, and F. Scheffold, A light scattering study of non equilibrium fluctuations in liquid mixtures to measure the soret and mass diffusion coefficient, J. Chem. Phys. 137 (2012), #234202.
  • F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process, Phys. Rev. E 76 (2007), no. 4, 041112.
  • G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser, 2004.
  • B. Davidovitch, E. Moro, and H. A. Stone, Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations, Phys. Rev. Lett. 95 (2005), no. 24, 244505.
  • M. S. Day and J. B. Bell, Numerical simulation of laminar reacting flows with complex chemistry, Combust. Theory Model. 4 (2000), no. 4, 535–556.
  • R. Delgado-Buscalioni, E. Chacon, and P. Tarazona, Hydrodynamics of nanoscopic capillary waves, Phys. Rev. Lett. 101 (2008), no. 10, 106102.
  • R. Delgado-Buscalioni, Tools for multiscale simulation of liquids using open molecular dynamics, Numerical analysis of multiscale computations (B. Engquist, O. Runborg, and Y.-H. R. Tsai, eds.), Lect. Notes Comput. Sci. Eng., no. 82, Springer, Heidelberg, 2012, pp. 145–166.
  • S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev, Temporal integrators for fluctuating hydrodynamics, Phys. Rev. E 87 (2013), no. 3, 033302.
  • G. D'Errico, O. Ortona, F. Capuano, and V. Vitagliano, Diffusion coefficients for the binary system glycerol + water at 25$^\circ$c: a velocity correlation study, J. Chem. Engin. Data 49 (2004), no. 6, 1665–1670.
  • F. Detcheverry and L. Bocquet, Thermal fluctuations in nanofluidic transport, Phys. Rev. Lett. 109 (2012), 024501.
  • F. Detcheverry and L. Bocquet, Thermal fluctuations of hydrodynamic flows in nanochannels, Phys. Rev. E 88 (2013), no. 1, 012106.
  • A. Donev, B. J. Alder, and A. L. Garcia, Stochastic hard-sphere dynamics for hydrodynamics of nonideal fluids, Phys. Rev. Lett. 101 (2008), 075902.
  • A. Donev, J. B. Bell, A. de la Fuente, and A. L. Garcia, Diffusive transport by thermal velocity fluctuations, Phys. Rev. Lett. 106 (2011), no. 20, 204501.
  • ––––, Enhancement of diffusive transport by non-equilibrium thermal fluctuations, J. Stat. Mech. Theor. Exp. (2011), P06014.
  • A. Donev, T. G. Fai, and E. Vanden-Eijnden, Reversible diffusion by thermal fluctuations, preprint, 2013.
  • ––––, A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law, J. Stat. Mech. Theor. Exp. (2014), P04004.
  • A. Donev, S. Torquato, and F. H. Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles, I: Algorithmic details, J. Comput. Phys. 202 (2005), no. 2, 737–764.
  • ––––, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles, II: Applications to ellipses and ellipsoids, J. Comput. Phys. 202 (2005), no. 2, 765–793.
  • A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell, On the accuracy of finite-volume schemes for fluctuating hydrodynamics, Commun. Appl. Math. Comput. Sci. 5 (2010), no. 2, 149–197.
  • J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Generic long-range correlations in molecular fluids, Annu. Rev. Phys. Chem. 45 (1994), 213–239.
  • B. Dünweg and A. J. C. Ladd, Lattice Boltzmann simulations of soft matter systems, Advanced computer simulation approaches for soft matter sciences, III (C. Holm and K. Kremer, eds.), Advances in Polymer Science, no. 221, Springer, Berlin, 2009, pp. 89–166.
  • D. R. Durran, Improving the anelastic approximation, J. Atmos. Sci. 46 (1989), no. 11, 1453–1461.
  • W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Commun. Math. Sci. 1 (2003), no. 2, 317–332.
  • P. Español, J. G. Anero, and I. Zúñiga, Microscopic derivation of discrete hydrodynamics, J. Chem. Phys. 131 (2009), 244117.
  • P. Español and I. Zúñiga, On the definition of discrete hydrodynamic variables, J. Chem. Phys. 131 (2009), 164106.
  • A. L. Garcia, M. Malek Mansour, G. C. Lie, M. Mareschal, and E. Clementi, Hydrodynamic fluctuations in a dilute gas under shear, Phys. Rev. A 36 (1987), no. 9, 4348–4355.
  • A. L. Garcia, Estimating hydrodynamic quantities in the presence of microscopic fluctuations, Commun. Appl. Math. Comput. Sci. 1 (2006), 53–78.
  • R. García-Rojo, S. Luding, and J. J. Brey, Transport coefficients for dense hard-disk systems, Phys. Rev. E 74 (2006), no. 6, 061305.
  • C. W. Gardiner and M. L. Steyn-Ross, Adiabatic elimination in stochastic systems, I, Phys. Rev. A 29 (1984), 2814–2822.
  • ––––, Adiabatic elimination in stochastic systems, II, Phys. Rev. A 29 (1984), 2823–2833.
  • ––––, Adiabatic elimination in stochastic systems, III, Phys. Rev. A 29 (1984), 2834–2844.
  • D. M. Gass, Enskog theory for a rigid disk fluid, J. Chem. Phys. 54 (1971), no. 5, 1898–1902.
  • F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces, Phys. Fluids 8 (1965), 2182–2189.
  • Y. Hennequin, D. G. A. L. Aarts, J. H. van der Wiel, G. Wegdam, J. Eggers, H. N. W. Lekkerkerker, and D. Bonn, Drop formation by thermal fluctuations at an ultralow surface tension, Phys. Rev. Lett. 97 (2006), no. 24, 244502.
  • C. Hijón, P. Español, E. Vanden-Eijnden, and R. Delgado-Buscalioni, Mori–Zwanzig formalism as a practical computational tool, Faraday Discuss. 144 (2010), 301–322.
  • C. A. Kennedy and M. H. Carpenter, Several new numerical methods for compressible shear-layer simulations, Appl. Num. Math. 14 (1994), no. 4, 397–433.
  • S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math. 35 (1982), no. 5, 629–651.
  • L. D. Landau and E. M. Lifshitz, Fluid mechanics, Course of Theoretical Physics, no. 6, Pergamon Press, Oxford, 1959.
  • ––––, Statistical physics, I, 3rd ed., Course of Theoretical Physics, no. 5, Butterworth–Heinemann, Oxford, 1980.
  • J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological transitions, Proc. R. Soc. Lond. Ser. A 454 (1998), no. 1978, 2617–2654.
  • J. Lutsko and J. W. Dufty, Mode-coupling contributions to the nonlinear shear viscosity, Phys. Rev. A 32 (1985), 1229–1231.
  • A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Technol. 42 (1985), no. 3–4, 185–205.
  • M. Mareschal, M. Malek Mansour, G. Sonnino, and E. Kestemont, Dynamic structure factor in a nonequilibrium fluid: a molecular-dynamics approach, Phys. Rev. A 45 (1992), 7180–7183.
  • Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys. 143 (1998), no. 1, 90–124.
  • M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science 289 (2000), no. 5482, 1165–1169.
  • B. Müller, Low-Mach-number asymptotics of the Navier–Stokes equations, J. Eng. Math. 34 (1998), no. 1–2, 97–109.
  • A. Naji, P. J. Atzberger, and F. L. H. Brown, Hybrid elastic and discrete-particle approach to biomembrane dynamics with application to the mobility of curved integral membrane proteins, Phys. Rev. Lett. 102 (2009), no. 13, 138102.
  • F. Nicoud, Conservative high-order finite-difference schemes for low-Mach number flows, J. Comput. Phys. 158 (2000), no. 1, 71–97.
  • H. Noguchi, N. Kikuchi, and G. Gompper, Particle-based mesoscale hydrodynamic techniques, Europhys. Lett. 78 (2007), 10005.
  • J. M. Ortiz de Zárate and J. V. Sengers, On the physical origin of long-ranged fluctuations in fluids in thermal nonequilibrium states, J. Stat. Phys. 115 (2004), no. 5–6, 1341–1359.
  • ––––, Hydrodynamic fluctuations in fluids and fluid mixtures, Elsevier, Amsterdam, 2006.
  • H. C. Öttinger, Beyond equilibrium thermodynamics, Wiley, Hoboken, NJ, 2005.
  • R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and J. P. Jessee, An adaptive projection method for unsteady, low-Mach number combustion, Combust. Sci. Technol. 140 (1998), no. 1–6, 123–168.
  • C. S. Peskin, G. M. Odell, and G. F. Oster, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophys. J. 65 (1993), no. 1, 316–324.
  • P. Rauwoens, J. Vierendeels, E. Dick, and B. Merci, A conservative discrete compatibility-constraint low-Mach pressure-correction algorithm for time-accurate simulations of variable density flows, J. Comput. Phys. 228 (2009), no. 13, 4714–4744.
  • R. G. Rehm and H. R. Baum, The equations of motion for thermally driven buoyant flows, J. Res. Natl. Bur. Stand. 83 (1978), 297–308.
  • T. Schneider, N. Botta, K. J. Geratz, and R. Klein, Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows, J. Comput. Phys. 155 (1999), no. 2, 248–286.
  • B. Z. Shang, N. K. Voulgarakis, and J.-W. Chu, Fluctuating hydrodynamics for multiscale simulation of inhomogeneous fluids: mapping all-atom molecular dynamics to capillary waves, J. Chem. Phys. 135 (2011), 044111.
  • C. M. Silva and H. Liu, Modelling of transport properties of hard sphere fluids and related systems, and its applications, Theory and simulation of hard-sphere fluids and related systems (A. Mulero, ed.), Lect. Notes Phys., no. 753, Springer, Berlin, 2008, pp. 383–492.
  • M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, Packing hyperspheres in high-dimensional Euclidean spaces, Phys. Rev. E 74 (2006), no. 4, 041127.
  • P. T. Sumesh, I. Pagonabarraga, and R. Adhikari, Lattice-Boltzmann–Langevin simulations of binary mixtures, Phys. Rev. E 84 (2011), 046709.
  • C. J. Takacs, G. Nikolaenko, and D. S. Cannell, Dynamics of long-wavelength fluctuations in a fluid layer heated from above, Phys. Rev. Lett. 100 (2008), no. 23, 234502.
  • F. B. Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin, Staggered schemes for fluctuating hydrodynamics, Multiscale Model. Simul. 10 (2012), no. 4, 1369–1408.
  • A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, C. J. Takacs, and D. S. Cannell, Gradient-driven fluctuations in microgravity, J. Phys. Condens. Matter 24 (2012), no. 28, 284134.
  • A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio, Fractal fronts of diffusion in microgravity, Nat. Commun. 2 (2011), 290.
  • A. Vailati and M. Giglio, Giant fluctuations in a free diffusion process, Nature 390 (1997), 262–265.
  • ––––, Nonequilibrium fluctuations in time-dependent diffusion processes, Phys. Rev. E 58 (1998), no. 4, 4361–4371.
  • N. K. Voulgarakis and J.-W. Chu, Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids, J. Chem. Phys. 130 (2009), no. 13, 134111.
  • L. Wang and M. Quintard, Nanofluids of the future, Advances in transport phenomena 2009 (L. Wang, ed.), Adv. Trans. Phenom., no. 1, Springer, Berlin, 2009, pp. 179–243.