Communications in Applied Mathematics and Computational Science

A hybrid parareal spectral deferred corrections method

Michael Minion

Full-text: Open access

Abstract

The parareal algorithm introduced in 2001 by Lions, Maday, and Turinici is an iterative method for the parallelization of the numerical solution of ordinary differential equations or partial differential equations discretized in the temporal direction. The temporal interval of interest is partitioned into successive domains which are assigned to separate processor units. Each iteration of the parareal algorithm consists of a high accuracy solution procedure performed in parallel on each domain using approximate initial conditions and a serial step which propagates a correction to the initial conditions through the entire time interval. The original method is designed to use classical single-step numerical methods for both of these steps. This paper investigates a variant of the parareal algorithm first outlined by Minion and Williams in 2008 that utilizes a deferred correction strategy within the parareal iterations. Here, the connections between parareal, parallel deferred corrections, and a hybrid parareal-spectral deferred correction method are further explored. The parallel speedup and efficiency of the hybrid methods are analyzed, and numerical results for ODEs and discretized PDEs are presented to demonstrate the performance of the hybrid approach.

Article information

Source
Commun. Appl. Math. Comput. Sci., Volume 5, Number 2 (2010), 265-301.

Dates
Received: 18 January 2010
Revised: 16 October 2010
Accepted: 19 October 2010
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.camcos/1513732011

Digital Object Identifier
doi:10.2140/camcos.2010.5.265

Mathematical Reviews number (MathSciNet)
MR2765386

Zentralblatt MATH identifier
1208.65101

Subjects
Primary: 65L99: None of the above, but in this section

Keywords
parallel in time parareal ordinary differential equations parallel computing spectral deferred corrections

Citation

Minion, Michael. A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5 (2010), no. 2, 265--301. doi:10.2140/camcos.2010.5.265. https://projecteuclid.org/euclid.camcos/1513732011


Export citation

References

  • G. Akrivis, M. Crouzeix, and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comp. 67 (1998), no. 222, 457–477.
  • ––––, Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math. 82 (1999), no. 4, 521–541.
  • G. Akrivis and Y.-S. Smyrlis, Implicit-explicit BDF methods for the Kuramoto–Sivashinsky equation, Appl. Numer. Math. 51 (2004), no. 2-3, 151–169.
  • U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations, Appl. Numer. Math. 25 (1997), no. 2-3, 151–167.
  • U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32 (1995), no. 3, 797–823.
  • G. Bal, Parallelization in time of (stochastic) ordinary differential equations, preprint, 2003, Available at \@urlhttp://www.columbia.edu/~gb2030/PAPERS/paralleltime.pdf.
  • G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differential equations, Domain decomposition methods in science and engineering (R. Kornhuber et al., eds.), Lect. Notes Comput. Sci. Eng., no. 40, Springer, Berlin, 2005, pp. 425–432.
  • G. Bal and Y. Maday, A “parareal” time discretization for non-linear PDE's with application to the pricing of an American put, Recent developments in domain decomposition methods (L. Pavarino and A. Toselli, eds.), Lect. Notes Comput. Sci. Eng., no. 23, Springer, Berlin, 2002, pp. 189–202.
  • G. Bal and Q. Wu, Symplectic parareal, Domain decomposition methods in science and engineering XVII (U. Langer et al., eds.), Lect. Notes Comput. Sci. Eng., no. 60, Springer, Berlin, 2008, pp. 401–408.
  • A. Bourlioux, A. T. Layton, and M. L. Minion, High-order multi-implicit spectral deferred correction methods for problems of reactive flow, J. Comput. Phys. 189 (2003), no. 2, 651–675.
  • E. L. Bouzarth, Regularized singularities and spectral deferred correction methods: A mathematical study of numerically modeling Stokes fluid flow, Ph.D. thesis, The University of North Carolina at Chapel Hill, 2008.
  • S. Bu, J. Huang, and M. L. Minion, Semi-implicit Krylov deferred correction methods for ordinary differential equations, Proceedings of the 15th American Conference on Applied Mathematics, WSEAS, 2009, pp. 95–100.
  • K. Burrage, Parallel methods for ODEs, Adv. Comput. Math. 7 (1997), no. 1-2, 1–31.
  • J. C. Butcher, Order and stability of parallel methods for stiff problems: Parallel methods for odes, Adv. Comput. Math. 7 (1997), no. 1-2, 79–96.
  • M. P. Calvo, J. de Frutos, and J. Novo, Linearly implicit Runge–Kutta methods for advection-reaction-diffusion equations, Appl. Numer. Math. 37 (2001), no. 4, 535–549.
  • A. Christlieb, C. Macdonald, and B. Ong, Parallel high-order integrators, SIAM J. Sci. Comput. 32 (2010), no. 2, 818–835.
  • A. Christlieb, B. Ong, and J.-M. Qiu, Integral deferred correction methods constructed with high order Runge–Kutta integrators, Math. Comp. 79 (2010), no. 270, 761–783.
  • M. L. Crow and M. Ilic, The parallel implementation of the waveform relaxation method for transient stability simulations, IEEE Trans. Power Syst. 5 (1990), no. 3, 922–932.
  • J. W. Daniel, V. Pereyra, and L. L. Schumaker, Iterated deferred corrections for initial value problems, Acta Ci. Venezolana 19 (1968), 128–135.
  • J. R. Dormand and P. J. Prince, A family of embedded Runge–Kutta formulae, J. Comput. Appl. Math. 6 (1980), no. 1, 19–26.
  • A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT 40 (2000), no. 2, 241–266.
  • C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications, Internat. J. Numer. Methods Engrg. 58 (2003), no. 9, 1397–1434.
  • P. F. Fischer, F. Hecht, and Y. Maday, A parareal in time semi-implicit approximation of the Navier–Stokes equations, Domain decomposition methods in science and engineering (T. J. Barth et al., eds.), Lect. Notes Comput. Sci. Eng., no. 40, Springer, Berlin, 2005, pp. 433–440.
  • J. Frank, W. Hundsdorfer, and J. G. Verwer, On the stability of implicit-explicit linear multistep methods, Appl. Numer. Math. 25 (1997), no. 2-3, 193–205.
  • M. J. Gander, A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations, Numer. Linear Algebra Appl. 6 (1999), no. 2, 125–145.
  • ––––, Analysis of the parareal algorithm applied to hyperbolic problems using characteristics, Bol. Soc. Esp. Mat. Apl. S$\vec{\rm e}$MA 42 (2008), 21–35.
  • M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, Domain decomposition methods in science and engineering XVII (U. Langer et al., eds.), Lect. Notes Comput. Sci. Eng., no. 60, Springer, Berlin, 2008, pp. 45–56.
  • M. J. Gander and M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for linear problems, Paris-Sud Working Group on Modelling and Scientific Computing 2007–2008 (E. Cancès et al., eds.), ESAIM Proc., no. 25, EDP Sci., Les Ulis, 2008, pp. 114–129.
  • M. J. Gander and A. E. Ruehli, Optimized waveform relaxation methods for $RC$ type circuits, IEEE Trans. Circuits Syst. I Regul. Pap. 51 (2004), no. 4, 755–768.
  • M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput. 29 (2007), no. 2, 556–578.
  • L. Greengard, Spectral integration and two-point boundary value problems, SIAM J. Numer. Anal. 28 (1991), no. 4, 1071–1080.
  • D. Guibert and D. Tromeur-Dervout, Adaptive parareal for systems of ODEs, Domain decomposition methods in science and engineering XVI (O. Widlund and D. Keyes, eds.), Lect. Notes Comput. Sci. Eng., no. 55, Springer, Berlin, 2007, pp. 587–594.
  • ––––, Parallel deferred correction method for CFD problems, Parallel computational fluid dynamics: parallel computing and its applications (J. H. Kwon, A. Ecer, N. Satofuka, J. Periaux, and P. Fox, eds.), Elsevier, Amsterdam, 2007, pp. 131–138.
  • M. Hu, K. Jackson, J. Janssen, and S. Vandewalle, Remarks on the optimal convolution kernel for CSOR waveform relaxation: Parallel methods for odes, Adv. Comput. Math. 7 (1997), no. 1-2, 135–156.
  • J. Huang, J. Jia, and M. Minion, Accelerating the convergence of spectral deferred correction methods, J. Comput. Phys. 214 (2006), no. 2, 633–656.
  • ––––, Arbitrary order Krylov deferred correction methods for differential algebraic equations, J. Comput. Phys. 221 (2007), no. 2, 739–760.
  • K. J. in 't Hout, On the contractivity of implicit-explicit linear multistep methods, Appl. Numer. Math. 42 (2002), no. 1-3, 201–212.
  • A. Iserles and S. P. Nørsett, On the theory of parallel Runge–Kutta methods, IMA J. Numer. Anal. 10 (1990), no. 4, 463–488.
  • C. A. Kennedy and M. H. Carpenter, Additive Runge–Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math. 44 (2003), no. 1-2, 139–181.
  • M. Kiehl, Parallel multiple shooting for the solution of initial value problems, Parallel Comput. 20 (1994), no. 3, 275–295.
  • A. T. Layton, On the choice of correctors for semi-implicit Picard deferred correction methods, Appl. Numer. Math. 58 (2008), no. 6, 845–858.
  • A. T. Layton and M. L. Minion, Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics, J. Comput. Phys. 194 (2004), no. 2, 697–715.
  • ––––, Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations, BIT 45 (2005), no. 2, 341–373.
  • ––––, Implications of the choice of predictors for semi-implicit Picard integral deferred correction methods, Commun. Appl. Math. Comput. Sci. 2 (2007), 1–34.
  • J.-L. Lions, Y. Maday, and G. Turinici, Résolution d'EDP par un schéma en temps “pararéel”, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 7, 661–668.
  • Y. Liu and J. Hu, Modified propagators of parareal in time algorithm and application to Princeton ocean model, Internat. J. Numer. Methods Fluids 57 (2008), no. 12, 1793–1804.
  • Y. Maday and G. Turinici, Parallel in time algorithms for quantum control: Parareal time discretization scheme, Int. J. Quantum Chem. 93 (2003), 223–228.
  • Y. Maday, J. Salomon, and G. Turinici, Monotonic parareal control for quantum systems, SIAM J. Numer. Anal. 45 (2007), no. 6, 2468–2482.
  • Y. Maday and G. Turinici, The parareal in time iterative solver: a further direction to parallel implementation, Domain decomposition methods in science and engineering (R. Kornhuber et al., eds.), Lect. Notes Comput. Sci. Eng., no. 40, Springer, Berlin, 2005, pp. 441–448.
  • M. L. Minion, Higher-order semi-implicit projection methods, Numerical simulations of incompressible flows (M. M. Hafez, ed.), World Sci. Publ., River Edge, NJ, 2003, pp. 126–140.
  • ––––, Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Math. Sci. 1 (2003), no. 3, 471–500.
  • ––––, Semi-implicit projection methods for incompressible flow based on spectral deferred corrections, Appl. Numer. Math. 48 (2004), no. 3-4, 369–387.
  • M. L. Minion and S. A. Williams, Parareal and spectral deferred corrections, Numerical analysis and applied mathematics (T. E. Simos, ed.), AIP Conference Proceedings, no. 1048, AIP, 2008, pp. 388–391.
  • W. L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary differential equations, Math. Comp. 21 (1967), 303–320.
  • J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM 7 (1964), 731–733.
  • L. Pareschi and G. Russo, Implicit-explicit Runge–Kutta schemes for stiff systems of differential equations, Recent trends in numerical analysis (D. Trigiante, ed.), Adv. Theory Comput. Math., no. 3, Nova Sci. Publ., Huntington, NY, 2001, pp. 269–288.
  • V. Pereyra, On improving an approximate solution of a functional equation by deferred corrections, Numer. Math. 8 (1966), 376–391.
  • ––––, Iterated deferred corrections for nonlinear operator equations, Numer. Math. 10 (1967), 316–323.
  • J. W. Shen and X. Zhong, Semi-implicit Runge–Kutta schemes for the non-autonomous differential equations in reactive flow computations, Proceedings of the 27th AIAA Fluid Dynamics Conference, AIAA, 1996, pp. 17–20.
  • G. A. Staff and E. M. Rønquist, Stability of the parareal algorithm, Domain decomposition methods in science and engineering (R. Kornhuber et al., eds.), Lect. Notes Comput. Sci. Eng., no. 40, Springer, Berlin, 2005, pp. 449–456.
  • S. Vandewalle and D. Roose, The parallel waveform relaxation multigrid method, Proceedings of the Third SIAM Conference on Parallel Processing for Scientific Computing, Soc. Indust. Appl. Math., 1989, pp. 152–156.
  • S. L. Wu, B. C. Shi, and C. M. Huang, Parareal-Richardson algorithm for solving nonlinear ODEs and PDEs, Commun. Comput. Phys. 6 (2009), no. 4, 883–902.
  • P. E. Zadunaisky, A method for the estimation of errors propagated in the numerical solution of a system of ordinary differential equations, The theory of orbits in the solar system and in stellar systems (G. Contopoulos, ed.), Proc. Int. Astron. Union Symp., no. 25, Academic Press, London, 1964.
  • X. Zhong, Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows, J. Comput. Phys. 128 (1996), no. 1, 19–31.