Communications in Applied Mathematics and Computational Science

An immersed boundary method for rigid bodies

Bakytzhan Kallemov, Amneet Bhalla, Boyce Griffith, and Aleksandar Donev

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/camcos.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We develop an immersed boundary (IB) method for modeling flows around fixed or moving rigid bodies that is suitable for a broad range of Reynolds numbers, including steady Stokes flow. The spatio-temporal discretization of the fluid equations is based on a standard staggered-grid approach. Fluid-body interaction is handled using Peskin’s IB method; however, unlike existing IB approaches to such problems, we do not rely on penalty or fractional-step formulations. Instead, we use an unsplit scheme that ensures the no-slip constraint is enforced exactly in terms of the Lagrangian velocity field evaluated at the IB markers. Fractional-step approaches, by contrast, can impose such constraints only approximately, which can lead to penetration of the flow into the body, and are inconsistent for steady Stokes flow. Imposing no-slip constraints exactly requires the solution of a large linear system that includes the fluid velocity and pressure as well as Lagrange multiplier forces that impose the motion of the body. The principal contribution of this paper is that it develops an efficient preconditioner for this exactly constrained IB formulation which is based on an analytical approximation to the Schur complement. This approach is enabled by the near translational and rotational invariance of Peskin’s IB method. We demonstrate that only a few cycles of a geometric multigrid method for the fluid equations are required in each application of the preconditioner, and we demonstrate robust convergence of the overall Krylov solver despite the approximations made in the preconditioner. We empirically observe that to control the condition number of the coupled linear system while also keeping the rigid structure impermeable to fluid, we need to place the immersed boundary markers at a distance of about two grid spacings, which is significantly larger from what has been recommended in the literature for elastic bodies. We demonstrate the advantage of our monolithic solver over split solvers by computing the steady state flow through a two-dimensional nozzle at several Reynolds numbers. We apply the method to a number of benchmark problems at zero and finite Reynolds numbers, and we demonstrate first-order convergence of the method to several analytical solutions and benchmark computations.

Article information

Source
Commun. Appl. Math. Comput. Sci., Volume 11, Number 1 (2016), 79-141.

Dates
Received: 16 June 2015
Revised: 23 November 2015
Accepted: 5 January 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.camcos/1510858441

Digital Object Identifier
doi:10.2140/camcos.2016.11.79

Mathematical Reviews number (MathSciNet)
MR3465396

Zentralblatt MATH identifier
1382.76191

Subjects
Primary: 65N22: Solution of discretized equations [See also 65Fxx, 65Hxx] 65N55: Multigrid methods; domain decomposition 76D07: Stokes and related (Oseen, etc.) flows

Keywords
immersed boundary method rigid body fluid-structure interaction

Citation

Kallemov, Bakytzhan; Bhalla, Amneet; Griffith, Boyce; Donev, Aleksandar. An immersed boundary method for rigid bodies. Commun. Appl. Math. Comput. Sci. 11 (2016), no. 1, 79--141. doi:10.2140/camcos.2016.11.79. https://projecteuclid.org/euclid.camcos/1510858441


Export citation

References

  • L. af Klinteberg and A.-K. Tornberg, Fast Ewald summation for Stokesian particle suspensions, Internat. J. Numer. Methods Fluids 76 (2014), no. 10, 669–698. \xxMR3276094
  • J. Ainley, S. Durkin, R. Embid, P. Boindala, and R. Cortez, The method of images for regularized Stokeslets, J. Comput. Phys. 227 (2008), no. 9, 4600–4616. \xxMR2009e:76050
  • S. Ambikasaran and E. Darve, An $\mathrm{O}(N\log N)$ fast direct solver for partial hierarchically semi-separable matrices: with application to radial basis function interpolation, J. Sci. Comput. 57 (2013), no. 3, 477–501. \xxMR3123554 \xxZBL1292.65030
  • A. Aminfar, S. Ambikasaran, and E. Darve, A fast block low-rank dense solver with applications to finite-element matrices, J. Comput. Phys. 304 (2016), 170–188. \xxMR3422408
  • A. M. Ardekani, S. Dabiri, and R. H. Rangel, Collision of multi-particle and general shape objects in a viscous fluid, J. Comput. Phys. 227 (2008), no. 24, 10094–10107. \xxMR2009k:76135 \xxZBL1218.76039
  • P. J. Atzberger, Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations, J. Comput. Phys. 230 (2011), no. 8, 2821–2837. \xxMR2012c:74040
  • S. Balay, W. Gropp, L. McInnes, and B. Smith, Efficient management of parallelism in object-oriented numerical software libraries, Modern software tools for scientific computing (E. Arge, A. Bruaset, and H. Langtangen, eds.), Birkhäuser, Boston, MA, 1997, pp. 163–202. \xxZBL0882.65154
  • F. Balboa Usabiaga, I. Pagonabarraga, and R. Delgado-Buscalioni, Inertial coupling for point particle fluctuating hydrodynamics, J. Comput. Phys. 235 (2013), 701–722. \xxMR3017618
  • F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev, Inertial coupling method for particles in an incompressible fluctuating fluid, Comput. Methods Appl. Mech. Eng. 269 (2014), 139–172. \xxMR3144637 \xxZBL1296.76167
  • Y. Bao, J. Kaye, and C. Peskin, A gaussian-like immersed boundary kernel with three continuous derivatives and improved translational invariance, preprint, 2015. \xxARXIV1505.07529
  • C. W. J. Beenakker, Ewald sum of the Rotne–Prager tensor, J. Chem. Phys. 85 (1986), no. 3, 1581–1582.
  • S. Benyahia, M. Syamlal, and T. J. O'Brien, Extension of Hill–Koch–Ladd drag correlation over all ranges of Reynolds number and solids volume fraction, Powder Technol. 162 (2006), no. 2, 166–174.
  • A. P. S. Bhalla, R. Bale, B. E. Griffith, and N. A. Patankar, A unified mathematical framework and an adaptive numerical method for fluid-structure interaction and rigid, deforming, and elastic bodies, J. Comput. Phys. 250 (2013), 446–476. \xxMR3079544
  • ––––, Fully resolved immersed electrohydrodynamics for particle motion, electrolocation, and self-propulsion, J. Comput. Phys. 256 (2014), 88–108. \xxMR3117399
  • S. Bhattacharya, J. Bławzdziewicz, and E. Wajnryb, Hydrodynamic interactions of spherical particles in suspensions confined between two planar walls, J. Fluid Mech. 541 (2005), 263–292. \xxMR2262651
  • T. T. Bringley and C. S. Peskin, Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain, J. Comput. Phys. 227 (2008), no. 11, 5397–5425. \xxMR2009j:76076 \xxZBL1220.76026
  • H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. 1 (1949), no. 1, 27–34. \xxZBL0041.54204
  • M. Cai, A. Nonaka, J. B. Bell, B. E. Griffith, and A. Donev, Efficient variable-coefficient finite-volume Stokes solvers, Commun. Comput. Phys. 16 (2014), no. 5, 1263–1297. \xxMR3256967
  • H. D. Ceniceros and J. E. Fisher, A fast, robust, and non-stiff immersed boundary method, J. Comput. Phys. 230 (2011), no. 12, 5133–5153. \xxMR2012b:65105
  • B. Cichocki and K. Hinsen, Stokes drag on conglomerates of spheres, Phys. Fluids 7 (1995), no. 2, 285–291. \xxZBL0832.76017
  • R. Cortez, The method of regularized Stokeslets, SIAM J. Sci. Comput. 23 (2001), no. 4, 1204–1225. \xxMR2002k:76102 \xxZBL1064.76080
  • R. Cortez, B. Cummins, K. Leiderman, and D. Varela, Computation of three-dimensional Brinkman flows using regularized methods, J. Comput. Phys. 229 (2010), no. 20, 7609–7624. \xxMR2011f:76127
  • R. Cortez, L. Fauci, and A. Medovikov, The method of regularized Stokeslets in three dimensions: analysis, validation, and application to helical swimming, Phys. Fluids 17 (2005), no. 3, 031504. \xxMR2005k:76031 \xxZBL1187.76105
  • P. Coulier, H. Pouransari, and E. Darve, The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems, preprint, 2015. \xxARXIV1508.01835
  • O. M. Curet, I. K. AlAli, M. A. MacIver, and N. A. Patankar, A versatile implicit iterative approach for fully resolved simulation of self-propulsion, Comput. Methods Appl. Mech. Engng. 199 (2010), no. 37-40, 2417–2424. \xxZBL1231.76176
  • J. G. de la Torre, M. L. Huertas, and B. Carrasco, Calculation of hydrodynamic properties of globular proteins from their atomic-level structure, Biophys. J. 78 (2000), no. 2, 719–730.
  • S. Delong, F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev, Brownian dynamics without Green's functions, J. Chem. Phys. 140 (2014), no. 13, 134110.
  • L. Durlofsky and J. F. Brady, Analysis of the Brinkman equation as a model for flow in porous media, Phys. Fluids 30 (1987), no. 11, 3329–3341. \xxZBL0636.76098
  • H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block preconditioners based on approximate commutators, SIAM J. Sci. Comput. 27 (2006), no. 5, 1651–1668. \xxMR2006j:65084 \xxZBL1100.65042
  • H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics, 2nd ed., Oxford University Press, 2014. \xxMR3235759 \xxZBL1304.76002
  • M. W. Gee, U. Küttler, and W. A. Wall, Truly monolithic algebraic multigrid for fluid-structure interaction, Int. J. Numer. Methods Eng. 85 (2011), no. 8, 987–1016. \xxMR2011m:65065 \xxZBL1217.74121
  • S. Ghose and R. Adhikari, Irreducible representations of oscillatory and swirling flows in active soft matter, Phys. Rev. Lett. 112 (2014), 118102.
  • B. E. Griffith, X. Luo, D. M. McQueen, and C. S. Peskin, Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method, Int. J. Appl. Mech. 01 (2009), no. 01, 137–177.
  • B. E. Griffith, An accurate and efficient method for the incompressible Navier–Stokes equations using the projection method as a preconditioner, J. Comput. Phys. 228 (2009), no. 20, 7565–7595. \xxMR2561832
  • ––––, Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, Int. J. Numer. Methods Biomed. Eng. 28 (2012), no. 3, 317–345. \xxMR2910281 \xxZBL1243.92017
  • ––––, On the volume conservation of the immersed boundary method, Commun. Comput. Phys. 12 (2012), no. 2, 401–432. \xxMR2897145
  • B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin, An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys. 223 (2007), no. 1, 10–49. \xxMR2008e:76133 \xxZBL1163.76041
  • B. E. Griffith and X. Luo, Hybrid finite difference/finite element version of the immersed boundary method, (2016), submitted to Int. J. Numer. Methods Biomed. Eng.
  • R. D. Guy and B. Philip, A multigrid method for a model of the implicit immersed boundary equations, Commun. Comput. Phys. 12 (2012), no. 2, 378–400. \xxMR2897144
  • J. Happel and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media, Mechanics of fluids and transport processes, no. 1, Springer, 1983. \xxZBL0612.76032
  • H. Hasimoto, On the periodic fundamental solutions of the Stokes' equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech. 5 (1959), 317–328. \xxMR21 #1078
  • M. Heil, A. L. Hazel, and J. Boyle, Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches, Comput. Mech. 43 (2008), no. 1, 91–101.
  • J. P. Hernández-Ortiz, J. J. de Pablo, and M. D. Graham, Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry, Phys. Rev. Lett. 98 (2007), 140602.
  • R. J. Hill, D. L. Koch, and A. J. C. Ladd, The first effects of fluid inertia on flows in ordered and random arrays of spheres, J. Fluid Mech. 448 (2001), 213–241. \xxMR2002i:76111 \xxZBL1045.76036
  • ––––, Moderate-Reynolds-number flows in ordered and random arrays of spheres, J. Fluid Mech. 448 (2001), 243–278. \xxMR2002i:76112 \xxZBL0997.76068
  • K. Hinsen, HYDROLIB: a library for the evaluation of hydrodynamic interactions in colloidal suspensions, Comput. Phys. Commun. 88 (1995), no. 2-3, 327–340.
  • K. L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive skeletonization, SIAM J. Sci. Comput. 34 (2012), no. 5, A2507–A2532. \xxMR3023714 \xxZBL1259.65062
  • R. M. Jendrejack, D. C. Schwartz, M. D. Graham, and J. J. de Pablo, Effect of confinement on DNA dynamics in microfluidic devices, J. Chem. Phys. 119 (2003), no. 2, 1165–1173.
  • S. Jiang, Z. Liang, and J. Huang, A fast algorithm for Brownian dynamics simulation with hydrodynamic interactions, Math. Comput. 82 (2013), no. 283, 1631–1645. \xxMR3042579
  • E. E. Keaveny, Fluctuating force-coupling method for simulations of colloidal suspensions, J. Comput. Phys. 269 (2014), 61–79. \xxMR3197680
  • R. Kekre, J. Butler, and A. Ladd, Comparison of lattice-boltzmann and brownian-dynamics simulations of polymer migration in confined flows, Phys. Rev. E 82 (2010), 011802.
  • D. L. Koch and A. J. C. Ladd, Moderate Reynolds number flows through periodic and random arrays of aligned cylinders, J. Fluid Mech. 349 (1997), 31–66. \xxMR98k:76030 \xxZBL0912.76014
  • D. L. Koch and G. Subramanian, Collective hydrodynamics of swimming microorganisms: living fluids, Annu. Rev. Fluid Mech. (2011), no. 43, 637–659. \xxMR2012f:76164 \xxZBL1299.76320
  • A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation, II: Numerical results, J. Fluid Mech. 271 (1994), 311–339. \xxMR95g:76040
  • A. J. C. Ladd, R. Kekre, and J. E. Butler, Comparison of the static and dynamic properties of a semiflexible polymer using lattice boltzmann and brownian-dynamics simulations, Phys. Rev. E 80 (2009), 036704.
  • K. Leiderman, E. L. Bouzarth, R. Cortez, and A. T. Layton, A regularization method for the numerical solution of periodic Stokes flow, J. Comput. Phys. 236 (2013), 187–202. \xxMR3020052 \xxZBL1286.76043
  • Z. Liang, Z. Gimbutas, L. Greengard, J. Huang, and S. Jiang, A fast multipole method for the Rotne–Prager–Yamakawa tensor and its applications, J. Comput. Phys. 234 (2013), 133–139. \xxMR2999771 \xxZBL1284.76318
  • S. Lomholt and M. R. Maxey, Force-coupling method for particulate two-phase flow: Stokes flow, J. Comput. Phys. 184 (2003), no. 2, 381–405. \xxZBL1047.76100
  • O. Marin, K. Gustavsson, and A.-K. Tornberg, A highly accurate boundary treatment for confined Stokes flow, Comput. Fluids 66 (2012), 215–230.
  • E. P. Newren, A. L. Fogelson, R. D. Guy, and R. M. Kirby, A comparison of implicit solvers for the immersed boundary equations, Comput. Methods Appl. Mech. Eng. 197 (2008), no. 25-28, 2290–2304. \xxMR2009f:74031 \xxZBL1158.76409
  • A. Ortega, D. Amorós, and J. G. de La Torre, Prediction of hydrodynamic and other solution properties of rigid proteins from atomic-and residue-level models, Biophys. J. 101 (2011), no. 4, 892–898.
  • A. Pal Singh Bhalla, B. Griffith, N. Patankar, and A. Donev, A minimally-resolved immersed boundary model for reaction-diffusion problems, J. Chem. Phys. 139 (2013), no. 21, 214112.
  • S. Patankar, Numerical heat transfer and fluid flow, CRC Press, Boca Raton, FL, 1980.
  • C. S. Peskin, The immersed boundary method, Acta Numer. 11 (2002), 479–517. http:www.ams.org/mathscinet-getitem?mr=2004h:74029MR 2004h:74029 \xxZBL1123.74309
  • C. S. Peskin and B. F. Printz, Improved volume conservation in the computation of flows with immersed elastic boundaries, J. Comput. Phys. 105 (1993), no. 1, 33–46. \xxMR93k:76081 \xxZBL0762.92011
  • C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, Cambridge Texts in Applied Mathematics, no. 8, Cambridge University Press, 1992. \xxMR93a:76027 \xxZBL0772.76005
  • A. M. Roma, C. S. Peskin, and M. J. Berger, An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (1999), no. 2, 509–534. \xxMR2000e:76100 \xxZBL0953.76069
  • J. Rotne and S. Prager, Variational treatment of hydrodynamic interaction in polymers, J. Chem. Phys. 50 (1969), no. 11, 4831–4837.
  • A. Sierou and J. F. Brady, Accelerated stokesian dynamics simulations, J. Fluid Mech. 448 (2001), 115–146.
  • D. B. Stein, R. D. Guy, and B. Thomases, Immersed boundary smooth extension: A high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods, J. Comput. Phys. 304 (2016), 252–274. \xxMR3422411
  • S.-W. Su, M.-C. Lai, and C.-A. Lin, An immersed boundary technique for simulating complex flows with rigid boundary, Comput. Fluids 36 (2007), no. 2, 313–324. \xxZBL1177.76299
  • J. W. Swan and J. F. Brady, Simulation of hydrodynamically interacting particles near a no-slip boundary, Phys. Fluids 19 (2007), no. 11, 113306. \xxZBL1182.76735
  • ––––, Particle motion between parallel walls: Hydrodynamics and simulation, Phys. Fluids 22 (2010), no. 10, 103301.
  • ––––, The hydrodynamics of confined dispersions, J. Fluid Mech. 687 (2011), 254–299. \xxMR2855929 \xxZBL1241.76406
  • J. W. Swan, J. F. Brady, R. S. Moore, and ChE 174, Modeling hydrodynamic self-propulsion with Stokesian dynamics, or teaching Stokesian dynamics to swim, Phys. Fluids 23 (2011), no. 7, 071901.
  • K. Taira and T. Colonius, The immersed boundary method: a projection approach, J. Comput. Phys. 225 (2007), no. 2, 2118–2137. \xxMR2009b:76036
  • J. M. Teran and C. S. Peskin, Tether force constraints in Stokes flow by the immersed boundary method on a periodic domain, SIAM J. Sci. Comput. 31 (2009), no. 5, 3404–3416. \xxMR2010h:76056 \xxZBL1197.76035
  • M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys. 209 (2005), no. 2, 448–476. \xxMR2151992 \xxZBL1138.76398
  • A. Vázquez-Quesada, F. Balboa Usabiaga, and R. Delgado-Buscalioni, A multiblob approach to colloidal hydrodynamics with inherent lubrication, J. Chem. Phys. 141 (2014), no. 20, 204102.
  • E. Wajnryb, K. A. Mizerski, P. J. Zuk, and P. Szymczak, Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors, J. Fluid Mech. 731 (2013), R3. \xxMR3138037 \xxZBL1294.76262
  • H. A. R. Williams, L. J. Fauci, and D. P. Gaver, III, Evaluation of interfacial fluid dynamical stresses using the immersed boundary method, Discrete Contin. Dyn. Syst. Ser. B 11 (2009), no. 2, 519–540. \xxMR2010g:65125 \xxZBL1277.76132
  • X. Yang, X. Zhang, Z. Li, and G.-W. He, A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, J. Comput. Phys. 228 (2009), no. 20, 7821–7836. \xxMR2010j:76099
  • K. Yeo and M. R. Maxey, Dynamics of concentrated suspensions of non-colloidal particles in Couette flow, J. Fluid Mech. 649 (2010), 205–231. \xxMR2011a:76094 \xxZBL1189.76677
  • C. Zhang, R. D. Guy, B. Mulloney, Q. Zhang, and T. J. Lewis, Neural mechanism of optimal limb coordination in crustacean swimming, Proc. Nat. Acad. Sci. USA 111 (2014), no. 38, 13840–13845.
  • Q. Zhang, R. D. Guy, and B. Philip, A projection preconditioner for solving the implicit immersed boundary equations, Numer. Math. Theory Methods Appl. 7 (2014), no. 4, 473–498. \xxMR3280968
  • Y. Zhang, J. J. de Pablo, and M. D. Graham, An immersed boundary method for Brownian dynamics simulation of polymers in complex geometries: Application to DNA flowing through a nanoslit with embedded nanopits, J. Chem. Phys. 136 (2012), no. 1, 014901.