Communications in Applied Mathematics and Computational Science

Time-parallel gravitational collapse simulation

Andreas Kreienbuehl, Pietro Benedusi, Daniel Ruprecht, and Rolf Krause

Full-text: Access denied (subscription has expired)

However, an active subscription may be available with MSP at msp.org/camcos.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This article demonstrates the applicability of the parallel-in-time method Parareal to the numerical solution of the Einstein gravity equations for the spherical collapse of a massless scalar field. To account for the shrinking of the spatial domain in time, a tailored load balancing scheme is proposed and compared to load balancing based on number of time steps alone. The performance of Parareal is studied for both the subcritical and black hole case; our experiments show that Parareal generates substantial speedup and, in the supercritical regime, can reproduce Choptuik’s black hole mass scaling law.

Article information

Source
Commun. Appl. Math. Comput. Sci., Volume 12, Number 1 (2017), 109-128.

Dates
Received: 24 April 2016
Revised: 28 December 2016
Accepted: 18 April 2017
First available in Project Euclid: 19 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.camcos/1508432641

Digital Object Identifier
doi:10.2140/camcos.2017.12.109

Mathematical Reviews number (MathSciNet)
MR3652442

Subjects
Primary: 35Q76: Einstein equations 65M25: Method of characteristics 65Y05: Parallel computation 83C57: Black holes

Keywords
Einstein–Klein–Gordon gravitational collapse Choptuik scaling Parareal spatial coarsening load balancing speedup

Citation

Kreienbuehl, Andreas; Benedusi, Pietro; Ruprecht, Daniel; Krause, Rolf. Time-parallel gravitational collapse simulation. Commun. Appl. Math. Comput. Sci. 12 (2017), no. 1, 109--128. doi:10.2140/camcos.2017.12.109. https://projecteuclid.org/euclid.camcos/1508432641


Export citation

References

  • M. Alcubierre, Introduction to $3+1$ numerical relativity, International Series of Monographs on Physics, no. 140, Oxford University, 2008.
  • E. Aubanel, Scheduling of tasks in the parareal algorithm, Parallel Comput. 37 (2011), no. 3, 172–182.
  • T. W. Baumgarte and S. L. Shapiro, Numerical relativity: solving Einstein's equations on the computer, Cambridge University, 2010.
  • M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984), no. 3, 484–512.
  • J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46 (2004), no. 3, 501–517.
  • F. Chen, J. S. Hesthaven, and X. Zhu, On the use of reduced basis methods to accelerate and stabilize the parareal method, Reduced order methods for modeling and computational reduction (A. Quarteroni and G. Rozza, eds.), Modeling, Simulation and Applications, no. 9, Springer, Cham, 2014, pp. 187–214.
  • M. W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett. 70 (1993), no. 1, 9–12.
  • M. W. Choptuik, E. W. Hirschmann, and R. L. Marsa, New critical behavior in Einstein–Yang–Mills collapse, Phys. Rev. D 60 (1999), no. 12, 124011.
  • A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM J. Sci. Comput. 32 (2010), no. 2, 818–835.
  • D. Christodoulou, Bounded variation solutions of the spherically symmetric Einstein-scalar field equations, Comm. Pure Appl. Math. 46 (1993), no. 8, 1131–1220.
  • X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems, SIAM J. Sci. Comput. 35 (2013), no. 1, A52–A78.
  • M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci. 7 (2012), no. 1, 105–132.
  • R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput. 36 (2014), no. 6, C635–C661.
  • P. F. Fischer, F. Hecht, and Y. Maday, A parareal in time semi-implicit approximation of the Navier–Stokes equations, Domain decomposition methods in science and engineering (Berlin, 2003) (R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, eds.), Lecture Notes in Computational Science and Engineering, no. 40, Springer, Berlin, 2005, pp. 433–440.
  • M. S. Floater and K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math. 107 (2007), no. 2, 315–331.
  • M. J. Gander, Analysis of the parareal algorithm applied to hyperbolic problems using characteristics, Bol. Soc. Esp. Mat. Apl. (2008), no. 42, 21–35.
  • ––––, 50 years of time parallel time integration, Multiple shooting and time domain decomposition methods (Heidelberg, 2013) (T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, eds.), Contributions in Mathematical and Computational Sciences, no. 9, Springer, Cham, 2015, pp. 69–113.
  • M. J. Gander and M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for linear problems, ESAIM Proc. 25 (2008), 114–129.
  • M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput. 29 (2007), no. 2, 556–578.
  • D. Garfinkle, Choptuik scaling in null coordinates, Phys. Rev. D 51 (1995), no. 10, 5558–5561.
  • C. Gundlach and J. M. Martín-García, Critical phenomena in gravitational collapse, Living Rev. Relativ. 10 (2007), no. 5.
  • W. Hackbusch, Parabolic multigrid methods, Proceedings of the sixth International Symposium on Computing Methods in Applied Sciences and Engineering (Versailles, 1983) (R. Glowinski and J.-L. Lions, eds.), North-Holland, Amsterdam, 1984, pp. 189–197.
  • G. Horton, The time-parallel multigrid method, Comm. Appl. Numer. Methods 8 (1992), no. 9, 585–595.
  • G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel complexity for solving parabolic partial differential equations, SIAM J. Sci. Comput. 16 (1995), no. 3, 531–541.
  • V. Husain, Critical behaviour in quantum gravitational collapse, Adv. Sci. Lett. 2 (2009), no. 2, 214–220.
  • L. E. Kidder, M. A. Scheel, S. A. Teukolsky, E. D. Carlson, and G. B. Cook, Black hole evolution by spectral methods, Phys. Rev. D 62 (2000), no. 8, 084032.
  • E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, S. S. Meyer, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Five-year Wilkinson microwave anisotropy probe observations: cosmological interpretation, Astrophys. J. Suppl. S. 180 (2009), no. 2, 330–376.
  • A. Kreienbuehl, Quantum cosmology, polymer matter, and modified collapse, Ph.D. thesis, University of New Brunswick, 2011.
  • A. Kreienbuehl, V. Husain, and S. S. Seahra, Modified general relativity as a model for quantum gravitational collapse, Classical Quant. Grav. 29 (2012), no. 9, 095008.
  • A. Kreienbuehl, A. Naegel, D. Ruprecht, R. Speck, G. Wittum, and R. Krause, Numerical simulation of skin transport using Parareal, Comput. Vis. Sci. 17 (2015), no. 2, 99–108.
  • J.-L. Lions, Y. Maday, and G. Turinici, Résolution d'EDP par un schéma en temps “pararéel”, C. R. Acad. Sci. Paris I 332 (2001), no. 7, 661–668.
  • F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, G. Allen, M. Campanelli, and P. Laguna, The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics, Classical Quant. Grav. 29 (2012), no. 11, 115001.
  • M. L. Minion, A hybrid parareal spectral deferred corrections method, Commun. Appl. Math. Comput. Sci. 5 (2010), no. 2, 265–301.
  • A. S. Nielsen and J. S. Hesthaven, Fault tolerance in the Parareal method, Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale (Kyoto, 2016), ACM, New York, 2016.
  • J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM 7 (1964), no. 12, 731–733.
  • E. Poisson, A relativist's toolkit: the mathematics of black-hole mechanics, Cambridge University, 2004.
  • F. Pretorius, Numerical simulations of gravitational collapse, Ph.D. thesis, University of British Columbia, 2002.
  • ––––, Evolution of binary black-hole spacetimes, Phys. Rev. Lett. 95 (2005), no. 12, 121101.
  • F. Pretorius and L. Lehner, Adaptive mesh refinement for characteristic codes, J. Comp. Phys. 198 (2004), no. 1, 10–34.
  • D. Ruprecht and R. Krause, Explicit parallel-in-time integration of a linear acoustic-advection system, Comput. Fluids 59 (2012), 72–83.
  • R. Speck and D. Ruprecht, Toward fault-tolerant parallel-in-time integration with PFASST, Parallel Comput. 62 (2017), 20–37.
  • R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, and P. Gibbon, A massively space-time parallel N-body solver, SC '12: proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (Salt Lake City, 2012), IEEE, Los Alamitos, CA, 2012.
  • J. Thornburg, Adaptive mesh refinement for characteristic grids, Gen. Relativity Gravitation 43 (2011), no. 5, 1211–1251.
  • J. Ziprick and G. Kunstatter, Dynamical singularity resolution in spherically symmetric black hole formation, Phys. Rev. D 80 (2009), no. 2, 024032.