Brazilian Journal of Probability and Statistics

Assigning probabilities to hypotheses in the context of a binomial distribution

Casper J. Albers, Otto J. W. F. Kardaun, and Willem Schaafsma

Full-text: Open access

Abstract

Given is the outcome $s$ of $S\sim{\mathrm{B}}(n,p)$ ($n$ known, $p$ fully unknown) and two numbers $0<a\leq b<1$. Required are probabilities $\alpha_{<}(s)$, $\alpha_{a,b}(s)$, and $\alpha_{>}(s)$ of the hypotheses $\mathrm{H}_{<}$: $p<a$, $\mathrm{H}_{a,b}$: $a\leq p\leq b$, and $\mathrm{H}_{>}$: $p>b$, such that their sum is equal to 1. The degenerate case $a=b(=c)$ is of special interest. A method, optimal with respect to a class of functions, is derived under Neyman–Pearsonian restrictions, and applied to a case from medicine.

Article information

Source
Braz. J. Probab. Stat., Volume 30, Number 1 (2016), 127-144.

Dates
Received: January 2013
Accepted: September 2014
First available in Project Euclid: 19 January 2016

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1453211806

Digital Object Identifier
doi:10.1214/14-BJPS264

Mathematical Reviews number (MathSciNet)
MR3453518

Zentralblatt MATH identifier
1381.62046

Keywords
Hypothesis testing $p$-values $q$-values squared error loss weak unbiasedness

Citation

Albers, Casper J.; Kardaun, Otto J. W. F.; Schaafsma, Willem. Assigning probabilities to hypotheses in the context of a binomial distribution. Braz. J. Probab. Stat. 30 (2016), no. 1, 127--144. doi:10.1214/14-BJPS264. https://projecteuclid.org/euclid.bjps/1453211806


Export citation

References

  • Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370–418. Reprinted in Biometrika 45 (1958), 293–315. (With an introduction by G. A. Barnard.)
  • Berger, J. O. (2003). Could Fisher, Jeffreys and Neyman have agreed on testing? (with discussion). Statist. Sci. 18, 1–32.
  • Bernoulli, J. (1713). Ars Conjectandi. Accedit tractatus de seriebus infinitis, et epistola Gallice scripta de ludo pilæ reticularis. Basel: Impensis Thurnisiorum. Translation into German as “Wahrscheinlichkeitsrechtnung (Ars Conjectandi)” and reprinted by R. Haussner (1899) (162 pages). Leipzig: Verlag von Wilhelm Engelmann.
  • Besselink, M. G. H., et al. for the Dutch Acute Pancreatitis Study Group (2008). Probiotic prophylaxis in predicted severe acute pancreatitis: A randomised, double-blind, placebo-controlled trial (with discussion). The Lancet 371, 651–659.
  • Epstein, E. S. (1969). A scoring system for probability forecasts of ranked categories. J. Appl. Meteorol. 8, 985–987.
  • Greene, D. H. and Knuth, D. E. (1982). Mathematics for the Analysis of Algorithms, Chapter 1, 2nd ed. Basel: Birkhäuser.
  • Hirji, K. F., Tan, S.-J. and Elashoff, R. M. (1991). A quasi-exact test for comparing two binomial proportions. Stat. Med. 10, 1137–1153.
  • Hwang, J. T., Casella, G., Robert, C., Wells, M. and Farrell, R. (1992). Estimation of accuracy of testing. Ann. Statist. 20, 490–509.
  • Hwang, J. T. and Yang, M. (2001). An optimality theory for mid $p$-values in $2\times2$ contingency tables. Statist. Sinica 11, 807–826.
  • Kardaun, O. J. W. F. and Schaafsma, W. (2015). Distributional Inference. In preparation.
  • Kroese, A. H. (1994). Distributional inference: A loss function approach. Ph.D. thesis, Univ. Groningen.
  • Kroese, A. H., Van der Meulen, E. A., Poortema, K. and Schaafsma, W. (1995). Distributional inference. Stat. Neerl. 49, 63–82.
  • Lancaster, H. O. (1961). Significance tests in discrete distributions. J. Amer. Statist. Assoc. 56, 223–234.
  • Lehmann, E. L. (1959). Testing Statistical Hypotheses, 1st ed. New York: Wiley. 3rd ed. with J. P. Romano (1997). Heidelberg: Springer.
  • Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine 50, 157–175. Reprinted in Breakthroughs in Statistics, Vol. II (N. L. Johnson and K. Kotz, eds.) 1–11. (With an introduction by G. A. Barnard.)
  • Rao, C. R. (1999). Statistics and Truth: Putting Chance to Work, 2nd ed. River Edge, NJ: World Scientific Publishing Co.
  • Rescher, N. (1969). Many-Valued Logic. New York: McGraw Hill.
  • Salomé, D. (1994). Statistical inference via fiducial methods. Ph.D. thesis, Univ. Groningen.
  • Savage, L. J. (1951). The theory of statistical decision. J. Amer. Statist. Assoc. 46, 55–67.
  • Schaafsma, W. (1989). Discussing the truth or falsity of a statistical hypothesis $H$ and its negation $A$. In Proceedings of the International Workshop on Theory and Practice in Data Analysis. Rep. Math. 89, 150–166. Berlin: Akademie der Wissenschaften der DDR.
  • Schaafsma, W., Tolboom, J. and Van der Meulen, E. A. (1989). Discussing truth of falsity by computing a $q$-value. In Statistical Data Analysis and Inference (Y. Dodge, ed.) 85–100. Amsterdam: North-Holland.
  • Wells, M. T. (2010). Optimality results for mid $p$-values. In Borrowing Strength: Theory Powering Applications—A Festschrift for Lawrence D. Brown. IMS Collections 6, 184–198. Beachwood, OH: IMS.