Brazilian Journal of Probability and Statistics

On matrix-variate Birnbaum–Saunders distributions and their estimation and application

Luis Sánchez, Víctor Leiva, Francisco J. Caro-Lopera, and Francisco José A. Cysneiros

Full-text: Open access

Abstract

Diverse phenomena from the real-world can be modeled using random matrices, allowing matrix-variate distributions to be considered. The normal distribution is often employed in this modeling, but usually the mentioned random matrices do not follow such a distribution. An asymmetric non-normal model that is receiving considerable attention due to its good properties is the Birnbaum–Saunders (BS) distribution. We propose a statistical methodology based on matrix-variate BS distributions. This methodology is implemented in the statistical software R. A simulation study is conducted to evaluate its performance. Finally, an application with real-world matrix-variate data is carried out to illustrate its potentiality and suitability.

Article information

Source
Braz. J. Probab. Stat., Volume 29, Number 4 (2015), 790-812.

Dates
Received: February 2014
Accepted: April 2014
First available in Project Euclid: 17 September 2015

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1442513447

Digital Object Identifier
doi:10.1214/14-BJPS247

Mathematical Reviews number (MathSciNet)
MR3397394

Zentralblatt MATH identifier
1329.60013

Keywords
Computer language data analysis elliptically contoured distribution maximum likelihood estimator Monte Carlo method shape theory

Citation

Sánchez, Luis; Leiva, Víctor; Caro-Lopera, Francisco J.; Cysneiros, Francisco José A. On matrix-variate Birnbaum–Saunders distributions and their estimation and application. Braz. J. Probab. Stat. 29 (2015), no. 4, 790--812. doi:10.1214/14-BJPS247. https://projecteuclid.org/euclid.bjps/1442513447


Export citation

References

  • Anderson, G. W., Guionnet, A. and Zeitouni, O. (2009). An Introduction to Random Matrices. Cambridge, UK: Cambridge Univ. Press.
  • Azevedo, C., Leiva, V., Athayde, E. and Balakrishnan, N. (2012). Shape and change point analyses of the Birnbaum–Saunders-$t$ hazard rate and associated estimation. Computational Statistics and Data Analysis 56, 3887–3897.
  • Balakrishnan, N., Leiva, V., Sanhueza, A. and Cabrera, E. (2009a). Mixture inverse Gaussian distribution and its transformations, moments and applications. Statistics 43, 91–104.
  • Balakrishnan, N., Leiva, V., Sanhueza, A. and Vilca, F. (2009b). Estimation in the Birnbaum–Saunders distribution based on scale-mixture of normals and the EM-algorithm. Statistics and Operations Research Transactions 33, 171–192.
  • Balakrishnan, N., Gupta, R., Kundu, D. Leiva, V. and Sanhueza, A. (2011). On some mixture models based on the Birnbaum–Saunders distribution and associated inference. Journal of Statistical Planning and Inference 141, 2175–2190.
  • Barros, M., Paula, G. A. and Leiva, V. (2009). An R implementation for generalized Birnbaum–Saunders distributions. Computational Statistics and Data Analysis 53, 1511–1528.
  • Birnbaum, Z. W. and Saunders, S. C. (1969a). A new family of life distributions. Journal of Applied Probability 6, 319–327.
  • Birnbaum, Z. W. and Saunders, S. C. (1969b). Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability 6, 328–347.
  • Brent, R. (1973). Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Prentice-Hall.
  • Caro-Lopera, F. J., Leiva, V. and Balakrishnan, N. (2012). Connection between the Hadamard and matrix products with an application to a matrix-variate Birnbaum–Saunders distribution. Journal of Multivariate Analysis 104, 126–139.
  • Díaz-García, J. A. and Domínguez-Molina, J. R. (2007). A new family of life distributions for dependent data: Estimation. Computational Statistics and Data Analysis 51, 5927–5939.
  • Díaz-García, J. A., Leiva, V. and Galea, M. (2002). Singular elliptical distribution: Density and applications. Communications in Statistics: Theory and Methods 31, 665–681.
  • Díaz-García, J. A., Galea, M. and Leiva, V. (2003). Influence diagnostics for elliptical multivariate linear regression models. Communications in Statistics: Theory and Methods 32, 625–641.
  • Díaz-García, J. A. and Leiva, V. (2005). A new family of life distributions based on elliptically contoured distributions. Journal of Statistical Planning and Inference 128, 445–457.
  • Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. Chichester: Wiley.
  • Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric Multivariate and Related Distributions. London: Chapman.
  • Ferreira, M., Gomes, M. I. and Leiva, V. (2012). On an extreme value version of the Birnbaum–Saunders distribution. Revstat Statistical Journal 10, 181–210.
  • Galea, M., Leiva, V. and Paula, G. (2004). Influence diagnostics in log-Birnbaum–Saunders regression models. Journal of Applied Statistics 31, 1049–1064.
  • Gupta, A. K. and Varga, T. (1993). Elliptically Contoured Models in Statistics. Boston: Kluwer.
  • Gupta, A. K. and Varga, T. (1994). A new class of matrix variate elliptically contoured distributions. Journal of the Italian Statistical Society 3, 255–270.
  • Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994a). Continuous Univariate Distributions. 1. New York: Wiley.
  • Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994b). Continuous Univariate Distributions. 2. New York: Wiley.
  • Kotz, S., Balakrishnan, N. and Johnson, N. L. (2000). Continuous Multivariate Distributions. 1. New York: Wiley.
  • Kotz, S., Leiva, V. and Sanhueza, A. (2010). Two new mixture models related to the inverse Gaussian distribution. Methodology and Computing in Applied Probability 12, 199–212.
  • Kundu, D., Balakrishnan, N. and Jamalizadeh, A. (2013). Generalized multivariate Birnbaum–Saunders distributions and related inferential issues. Journal of Multivariate Analysis 116, 230–244.
  • Leiva, V., Barros, M., Paula, G. A. and Sanhueza, A. (2008a). Generalized Birnbaum–Saunders distributions applied to air pollutant concentration. Environmetrics 19, 235–249.
  • Leiva, V., Sanhueza, A., Sen, P. K. and Paula, G. A. (2008b). Random number generators for the generalized Birnbaum–Saunders distribution. Journal of Statistical Computation and Simulation 78, 1105–1118.
  • Leiva, V., Sanhueza, A., Silva, A. and Galea, M. (2008c). A new three-parameter extension of the inverse Gaussian distribution. Statistics and Probability Letters 78, 1266–1273.
  • Leiva, V., Sanhueza, A. and Angulo, J. M. (2009). A length-biased version of the Birnbaum–Saunders distribution with application in water quality. Stochastic Environmental Research and Risk Assessment 23, 299–307.
  • Leiva, V., Sanhueza, A., Kotz, S. and Araneda, N. (2010). A unified mixture model based on the inverse Gaussian distribution. Pakistan Journal of Statistics 26, 445–460.
  • Leiva, V., Soto, G., Cabrera, E. and Cabrera, G. (2011a). New control charts based on the Birnbaum–Saunders distribution and their implementation. Revista Colombiana de Estadística 34, 147–176.
  • Leiva, V., Athayde, E., Azevedo, C. and Marchant, C. (2011b). Modeling wind energy flux by a Birnbaum–Saunders distribution with unknown shift parameter. Journal of Applied Statistics 38, 2819–2838.
  • Leiva, V., Ponce, M. G., Marchant, C. and Bustos, O. (2012). Fatigue statistical distributions useful for modeling diameter and mortality of trees. Revista Colombiana de Estadística 35, 349–367.
  • Leiva, V., Marchant, C., Saulo, H., Aslam, M. and Rojas, F. (2014a). Capability indices for Birnbaum–Saunders processes applied to electronic and food industries. Journal of Applied Statistics 41, 1881–1902.
  • Leiva, V., Rojas, E., Galea, M. and Sanhueza, A. (2014b). Diagnostics in Birnbaum–Saunders accelerated life models with an application to fatigue data. Applied Stochastic Models in Business and Industry 30, 115–131.
  • Leiva, V., Santos-Neto, M., Cysneiros, F. J. A. and Barros, M. (2014d). Birnbaum–Saunders statistical modelling: A new approach. Statistical Modelling 14, 21–48.
  • Marchant, C., Bertin, K., Leiva, V. and Saulo, H. (2013a). Generalized Birnbaum–Saunders kernel density estimators and an analysis of financial data. Computational Statistics and Data Analysis 63, 1–15.
  • Marchant, C., Leiva, V., Cavieres, M. F. and Sanhueza, A. (2013b). Air contaminant statistical distributions with application to PM10 in Santiago, Chile. Reviews of Environmental Contamination and Toxicology 223, 1–31.
  • Paula, G. A., Leiva, V., Barros, M. and Liu, S. (2012). Robust statistical modeling using the Birnbaum–Saunders-$t$ distribution applied to insurance. Applied Stochastic Models in Business and Industry 28, 16–34.
  • Santana, L., Vilca, F. and Leiva, V. (2011). Influence analysis in skew-Birnbaum–Saunders regression models and applications. Journal of Applied Statistics 38, 1633–1649.
  • Tulino, A. M. and Verdú, S. (2004). Random Matrix Theory and Wireless Communications. Hanover, MA: Now Publishers Inc.
  • Vilca, F., Sanhueza, A., Leiva, V. and Christakos, G. (2010). An extended Birnbaum–Saunders model and its application in the study of environmental quality in Santiago, Chile. Stochastic Environmental Research and Risk Assessment 24, 771–782.
  • Vilca, F., Santana, L., Leiva, V. and Balakrishnan, N. (2011). Estimation of extreme percentiles in Birnbaum–Saunders distributions. Computational Statistics and Data Analysis 55, 1665–1678.