Brazilian Journal of Probability and Statistics

Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors

Giambattista Giacomin and Christophe Poquet

Full-text: Open access

Abstract

Large families of noisy interacting units (cells, individuals, components in a circuit, …) exhibiting synchronization often exhibit oscillatory behaviors too. This is a well established empirical observation that has attracted a remarkable amount of attention, notably in life sciences, because of the central role played by internally generated rhythms. A certain number of elementary models that seem to capture the essence, or at least some essential features, of the phenomenon have been set forth, but the mathematical analysis is in any case very challenging and often out of reach. We focus on phase models, proposed and repeatedly considered by Y. Kuramoto and coauthors, and on the mathematical results that can be established. In spite of the fact that noise plays a crucial role, and in fact these models in abstract terms are just a special class of diffusions in high dimensional spaces, the core of the analysis is at the level of the PDE that provides an accurate description of the limit of a very large number of units in interaction. We will stress how the fundamental difficulty in dealing with these models is in their non-equilibrium character and the results we present for phase models are crucially related to the fact that, with a very special choice of the parameters, they reduce to an equilibrium statistical mechanics model.

Article information

Source
Braz. J. Probab. Stat., Volume 29, Number 2 (2015), 460-493.

Dates
First available in Project Euclid: 15 April 2015

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1429105598

Digital Object Identifier
doi:10.1214/14-BJPS258

Mathematical Reviews number (MathSciNet)
MR3336876

Zentralblatt MATH identifier
1330.92017

Keywords
Coupled stochastic rotators Kuramoto synchronization model coupled excitable systems Fokker–Planck PDE normally contracting manifold rhythmic behaviors

Citation

Giacomin, Giambattista; Poquet, Christophe. Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors. Braz. J. Probab. Stat. 29 (2015), no. 2, 460--493. doi:10.1214/14-BJPS258. https://projecteuclid.org/euclid.bjps/1429105598


Export citation

References

  • Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. and Spigler, R. (2005). The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Modern Phys. 77, 137–185.
  • Arnold, A., Bonilla, L. L. and Markowich, P. A. (1996). Liapunov functionals and large-time-asymptotics of mean-field nonlinear Fokker–Planck equations. Transport Theory Statist. Phys. 25, 733–751.
  • Aronson, D. G. (1968). Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa (3) 22, 607–694.
  • Barabási, A.-L. (2002). Linked: The New Science of Networks. Cambridge, MA: Perseus.
  • Bates, P. W., Lu, K. and Zeng, C. (1998). Existence and persistence of invariant manifolds for semiflows in Banach space. Mem. Amer. Math. Soc. 135, 1–129.
  • Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2014). Macroscopic fluctuation theory. Preprint. Available at arXiv:1404.6466.
  • Bertini, L., Giacomin, G. and Pakdaman, K. (2010). Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Stat. Phys. 138, 270–290.
  • Bertini, L., Giacomin, G. and Poquet, C. (2014). Synchronization and random long time dynamics for mean-field plane rotators. Probab. Theory Related Fields 160, 593–653.
  • Daido, H. (1992). Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Progr. Theoret. Phys. Suppl. 88, 1213–1218.
  • Dai Pra, P., Fischer, M. and Regoli, D. (2013). A Curie–Weiss model with dissipation. J. Stat. Phys. 152, 37–53.
  • Dai Pra, P. and den Hollander, F. (1996). McKean–Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84, 735–772.
  • Derrida, B. (2011). Microscopic versus macroscopic approaches to non-equilibrium systems. J. Stat. Mech. Theory Exp. 2011, P01030.
  • Doi, M. (1981). Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polymer Science 19, 229–243.
  • Ermentrout, G. B. and Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233–253.
  • Fenichel, N. (1971/1972). Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226.
  • Giacomin, G. and Lebowitz, J. L. (1997). Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87, 37–61.
  • Giacomin, G. and Lebowitz, J. L. (1998). Phase segregation dynamics in particle systems with long range interactions. II. Interface motion. SIAM J. Appl. Math. 58, 1707–1729.
  • Giacomin, G., Luçon, E. and Poquet, C. (2014). Coherence stability and effect of random natural frequencies in populations of coupled oscillators. J. Dynam. Differential Equations 26, 333–367.
  • Giacomin, G., Pakdaman, K. and Pellegrin, X. (2012a). Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25, 1247–1273.
  • Giacomin, G., Pakdaman, K., Pellegrin, X. and Poquet, C. (2012b). Transitions in active rotator systems: Invariant hyperbolic manifold approach. SIAM J. Math. Anal. 44, 4165–4194.
  • Gunawardena, J. (2014). Models in biology: ‘Accurate descriptions of our pathetic thinking’. BMC Biol. 12, 1–11.
  • He, L., Le Bris, C. and Lelièvre, T. (2012). Periodic long-time behaviour for an approximate model of nematic polymers. Kinet. Relat. Models 5, 357–382.
  • Henry, D. (1981). Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics 840. Berlin–New York: Springer.
  • Hess, S. (1976). Fokker–Planck-equation approach to flow alignment in liquid crystals. Z. Naturforsch. 31a, 1034–1037.
  • Hirsch, M. W., Pugh, C. C. and Shub, M. (1977). Invariant Manifolds. Lecture Notes in Mathematics 583. Berlin–New York: Springer.
  • Joint, I., Downie, J. A. and Williams, P. (2007). Bacterial conversations: Talking, listening and eavesdropping. An introduction. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362, 1115–1117.
  • Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Springer Series in Synergetics 19. Berlin: Springer.
  • Kuramoto, Y., Shinomoto, S. and Sakaguchi, H. (1987). Active rotator model for large populations of oscillatory and excitable elements. In Mathematical Topics in Population Biology, Morphogenesis and Neurosciences (Kyoto, 1985). Lecture Notes in Biomath. 71, 329–337. Berlin: Springer.
  • Lancellotti, C. (2005). On the Vlasov limit for systems of nonlinearly coupled oscillators without noise. Transport Theory Statist. Phys. 34, 523–535.
  • Lebowitz, J., Orlandi, E. and Presutti, E. (1991). A particle model for spinodal decomposition. J. Stat. Phys. 63, 933–974.
  • Lee, J. H., Forest, M. G. and Zhou, R. (2006). Alignment and Rheo-oscillator criteria for sheared nematic polymer films in the monolayer limit. Discrete Contin. Dyn. Syst. Ser. B 6, 339–356 (electronic).
  • Lindner, B., Garcia Ojalvo, J., Neiman, A. and Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Phys. Rep. 392, 321–424.
  • Luçon, E. (2011). Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16, 792–829.
  • Nardini, C., Gupta, S., Ruffo, S., Dauxois, T. and Bouchet, F. (2012). Kinetic theory for non-equilibrium stationary states in long-range interacting systems. J. Stat. Mech. Theory Exp. 2012, L01002.
  • Pakdaman, K., Perthame, B. and Salort, D. (2013). Relaxation and self-sustained oscillations in the time elapsed neuron network model. SIAM J. Appl. Math. 73, 1260–1279.
  • Pearce, P. A. (1981). Mean-field bounds on the magnetization for ferromagnetic spin models. J. Stat. Phys. 25, 309–320.
  • Pikovsky, A., Rosenblum, M. and Kurths, J. (2001). Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge Nonlinear Science Series 12. Cambridge: Cambridge Univ. Press.
  • Presutti, E. (2009). Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Theoretical and Mathematical Physics. Berlin: Springer.
  • Rybko, A., Shlosman, S. and Vladimirov, A. (2009). Spontaneous resonances and the coherent states of the queuing networks. J. Stat. Phys. 134, 67–104.
  • Scheutzow, M. (1985). Noise can create periodic behavior and stabilize nonlinear diffusions. Stochastic Process. Appl. 20, 323–331.
  • Scheutzow, M. (1986). Periodic behavior of the stochastic Brusselator in the mean-field limit. Probab. Theory Related Fields 72, 425–462.
  • Sell, G. and You, Y. (2002). Dynamics of Evolutionary Equations. Applied Mathematical Sciences 143. New York: Springer.
  • Sakaguchi, H. (1988). Cooperative phenomena in coupled oscillator systems under external fields. Progr. Theoret. Phys. 79, 39–46.
  • Sakaguchi, H., Shinomoto, S. and Kuramoto, Y. (1988a). Phase transitions and their bifurcation analysis in a large population of active rotators with mean-field coupling. Progr. Theoret. Phys. 79, 600–607.
  • Sakaguchi, H., Shinomoto, S. and Kuramoto, Y. (1988b). Mutual entrainment in oscillator lattices with nonvariational type interaction. Progr. Theoret. Phys. 79, 1069–1079.
  • Shinomoto, S. and Kuramoto, Y. (1986a). Phase transitions in active rotator systems. Progr. Theoret. Phys. Suppl. 75, 1105–1110.
  • Shinomoto, S. and Kuramoto, Y. (1986b). Cooperative phenomena in two-dimensional active rotator systems. Progr. Theoret. Phys. Suppl. 75, 1319–1327.
  • Silver, H., Frankel, N. E. and Ninham, B. W. (1972). A class of mean field models. J. Math. Phys. 13, 468–474.
  • Strogatz, S. (2003). Sync. How Order Emerges from Chaos in the Universe, Nature, and Daily Life. New York: Hyperion Books.
  • Teramae, J., Nakao, H. and Ermentrout, G. B. (2009). Stochastic phase reduction for a general class of noisy limit cycle oscillators. Phys. Rev. Lett. 102, 194102.
  • Touboul, J., Hermann, G. and Faugeras, O. (2012). Noise-induced behaviors in neural mean field dynamics. SIAM J. Appl. Dyn. Syst. 11, 49–81.
  • Yushimura, K. and Arai, K. (2008). Phase reduction of stochastic limit cycle oscillators. Phys. Rev. Lett. 101, 154101.