Brazilian Journal of Probability and Statistics

A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins

M. Kelbert, Yu. Suhov, and A. Yambartsev

Full-text: Open access

Abstract

We consider infinite random causal Lorentzian triangulations emerging in quantum gravity for critical values of parameters. With each vertex of the triangulation we associate a Hilbert space representing a bosonic particle moving in accordance with the standard laws of Quantum Mechanics. The particles interact via two-body potentials decaying with the graph distance. A Mermin–Wagner type theorem is proven for infinite-volume reduced density matrices related to solutions to DLR equations in the Feynman–Kac (FK) representation.

Article information

Source
Braz. J. Probab. Stat., Volume 28, Number 4 (2014), 515-537.

Dates
First available in Project Euclid: 30 July 2014

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1406741878

Digital Object Identifier
doi:10.1214/13-BJPS222

Mathematical Reviews number (MathSciNet)
MR3263063

Zentralblatt MATH identifier
1303.82011

Keywords
Causal Lorentzian triangulations size-biased critical Galton–Watson branching process quantum bosonic system with continuous spins compact Lie group action the Feynman–Kac representation FK-DLR equations reduced density matrix invariance

Citation

Kelbert, M.; Suhov, Yu.; Yambartsev, A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Braz. J. Probab. Stat. 28 (2014), no. 4, 515--537. doi:10.1214/13-BJPS222. https://projecteuclid.org/euclid.bjps/1406741878


Export citation

References

  • Albeverio, S., Kondratiev, Y., Kozitsky, Y. and Röckner, M. (2009). The Statistical Mechanics of Quantum Lattice Systems. A Path Integral Approach. EMS Tracts in Mathematics 8. Zurich: European Mathematical Society.
  • Bonato, C. A., Fernando Perez, J. and Klein, A. (1982). The Mermin–Wagner phenomenon and cluster properties of one- and two-dimensional systems. J. Stat. Phys. 29, 159–175.
  • Bratteli, O. and Robinson, D. (2002a). Operator Algebras and Quantum Statistical Mechanics. Vol. I: $C^{*}$- and $W^{*}$-Algebras. Symmetry Groups. Decomposition of States. Berlin: Springer-Verlag.
  • Bratteli, O. and Robinson, D. (2002b). Operator Algebras and Quantum Statistical Mechanics. Vol. II: Equilibrium States. Models in Quantum Statistical Mechanics. Berlin: Springer-Verlag.
  • Dobrushin, R. L. and Shlosman, S. B. (1975). Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Commun. Math. Phys. 42, 31–40.
  • Durhuus, B., Jonsson, T. and Wheater, J. F. (2007). The spectral dimension of generic trees. J. Stat. Phys. 128, 1237–1260.
  • Fröhlich, J. and Pfister, C. (1981). On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Commun. Math. Phys. 81, 277–298.
  • Georgii, H.-O. (1988). Gibbs Measures and Phase Transitions. Berlin: Walter de Gruyter.
  • Ginibre, J. (1973). Some applications of functional integration in statistical mechanics. In Statistical Mechanics and Quantum Field Theory (C. M. DeWitt and R. Stora, eds.) 327–428. New York: Gordon & Breach.
  • Ioffe, D., Shlosman, S. and Velenik, Y. (2002). 2D models of statistical physics with continuous symmetry: The case of singular interactions. Commun. Math. Phys. 226, 433–454.
  • Kelbert, M. and Suhov, Y. (2013a). A quantum Mermin–Wagner theorem for quantum rotators on two-dimensional graphs. J. Math. Phys. 54, 033301, 24 pp.
  • Kelbert, M. and Suhov, Y. (2013b). A quantum Mermin–Wagner theorem for a generalized Habbard model. Adv. Math. Phys. 2013, Art. ID 637375, 20 pp.
  • Kelbert, M., Suhov, Y. and Yambartsev, A. (2013). A Mermin–Wagner theorem for Gibbs states on Lorentzian triangulations. J. Stat. Phys. 150, 671–677.
  • Klein, A. and Landau, L. J. (1981). Stochastic processes associated with KMS states. J. Funct. Anal. 42, 368–428.
  • Loll, R., Ambjorn, J. and Jurkiewicz, J. (2006). The universe from scratch. Contemp. Phys. 47, 103–117.
  • Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of $L\log L$ criteria for mean behavior of branching processes. Ann. Probab. 23, 1125–1138.
  • Malyshev, V., Yambartsev, A. and Zamyatin, A. (2001). Two-dimensional Lorentzian models. Mosc. Math. J. 1, 439–456.
  • Mermin, N. D. and Wagner, H. (1966). Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136.
  • Pfister, C.-E. (1981). On the symmetry of the Gibbs states in two-dimensional lattice systems. Commun. Math. Phys. 79, 181–188.
  • Suhov, Yu. M. (1970). Existence and regularity of the limit Gibbs state for one-dimensional continuous systems of quantum statistical mechanics. Soviet Math. (Dokl.) 11, 1629–1632.