Brazilian Journal of Probability and Statistics

Modelling categorized levels of precipitation

Patrícia Lusié Velozo, Mariane B. Alves, and Alexandra M. Schmidt

Full-text: Open access


We propose a dynamic model to analyze polychotomous data subject to temporal variation. In particular, we propose to model categorized levels of rainfall across time. Our model assumes that the observed category is related to an underlying latent continuous variable, which is modelled according to a power transformation of a Gaussian latent process, centered on a predictor that assigns dynamic effects to observable covariates. The inference procedure is based on the Bayesian paradigm and makes use of Markov chain Monte Carlo methods. We analyze artificial sets of data and daily measurements of rainfall in Rio de Janeiro, Brazil. When compared to the fitting of the actual observed volume of rainfall, our categorized model seems to recover well the structure of the data.

Article information

Braz. J. Probab. Stat., Volume 28, Number 2 (2014), 190-208.

First available in Project Euclid: 4 April 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Bayesian inference cumulative link model latent variable ordinal data probit model


Velozo, Patrícia Lusié; Alves, Mariane B.; Schmidt, Alexandra M. Modelling categorized levels of precipitation. Braz. J. Probab. Stat. 28 (2014), no. 2, 190--208. doi:10.1214/12-BJPS201.

Export citation


  • Agresti, A. (1990). Categorical Data Analysis. Wiley Series in Probability and Mathematical Statistics. New York: Wiley.
  • Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88, 669–679.
  • Alves, M. B., Gamerman, D. and Ferreira, M. A. R. (2010). Transfer functions in dynamic generalized linear models. Statistical Modelling 10, 3–40.
  • Berret, C. and Calder, C. A. (2012). Data augmentation strategies for the bayesian spatial probit regression model. Computational Statistics & Data Analysis 56, 478–490.
  • Cargnoni, C., Müller, P. and West, M. (1997). Bayesian forecasting of multinomial time series through conditionally Gaussian dynamic models. Journal of the American Statistical Association 92, 640–647.
  • Carlin, B. P. and Polson, N. G. (1992). Monte Carlo Bayesian methods for discrete regression models and categorical time series. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and Smith, A. F. M., eds.) 577–586. Oxford, UK: Oxford Univ. Press.
  • Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika 81, 541–553.
  • Chen, M.-H. and Dey, D. K. (2000). A unified Bayesian approach for analysing correlated ordinal response data. Brazilian Journal of Probability and Statistics 14, 87–111.
  • Congdon, P. (2005). Bayesian Models for Categorical Data. Wiley Series in Probability and Statistics. Chichester: Wiley.
  • De Oliveira, V. (2000). Bayesian prediction of clipped Gaussian random fields. Computational Statistics & Data Analysis 34, 299–314.
  • De Oliveira, V. (2004). A simple model for spatial rainfall fields. Stochastic Environmental Research and Risk Assessment 18, 131–140.
  • Fernandes, M. V. M., Schmidt, A. M. and Migon, H. S. (2009). Modelling zero-inflated spatio-temporal processes. Statistical Modelling 9, 3–25.
  • Frühwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis 15, 183–202.
  • Fuentes, M., Reich, B. J. and Lee, G. (2008). Spatial-temporal mesoscale modelling of rainfall intensity using gage and radar data. The Annals of Applied Statistics 4, 1148–1169.
  • Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398–409.
  • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741.
  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.
  • Higgs, M. D. and Hoeting, J. A. (2010). A clipped latent variable model for spatially correlated ordered categorical data. Computational Statistiscs & Data Analysis 54, 1999–2011.
  • Hughes, J. P., Guttorp, P. and Charles, S. P. (1999). A non-homogeneous hidden Markov model for precipitation ocurrence. Applied Statistics 48, 15–30.
  • Jeffreys, H. (1961). Theory of Probability, 3rd ed. Oxford, UK: Oxford Univ. Press.
  • Knorr-Held, L. (1995). Dynamic cumulative probit models for ordinal panel-data; a Bayesian analysis by Gibbs sampling. Technical Report 386, Ludwig-Maximilians-Universität, Munich, Germany.
  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21, 1087–1092.
  • Sansó, B. and Guenni, L. (1999a). A stochastic model for tropical rainfall at a single location. Journal of Hydrology 214, 64–73.
  • Sansó, B. and Guenni, L. (1999b). Venezuelan rainfall data analysed by using a Bayesian space-time model. Applied Statistics 48, 345–362.
  • Stid, C. K. (1973). Estimating the precipitation climate. Water Resources Research 9, 1235–2141.
  • West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models, 2nd ed. Springer Series in Statistics. New York: Springer.