Brazilian Journal of Probability and Statistics

Test procedures based on combination of Bayesian evidences for $H_{0}$

Rosangela H. Loschi, Cristiano C. Santos, and Reinaldo B. Arellano-Valle

Full-text: Open access

Abstract

We introduce two procedures for testing which are based on pooling the posterior evidence for the null hypothesis provided by the full Bayesian significance test and the posterior probability for the null hypothesis. Although the proposed procedures can be used in more general situations, we focus attention in tests for a precise null hypothesis. We prove that the proposed procedure based on the linear operator is a Bayes rule. We also verify that it does not lead to the Jeffreys–Lindley paradox. For a precise null hypothesis, we prove that the procedure based on the logarithmic operator is a generalization of Jeffreys test. We apply the results to some well-known probability families. The empirical results show that the proposed procedures present good performances. As a by-product we obtain tests for normality under the skew-normal one.

Article information

Source
Braz. J. Probab. Stat., Volume 26, Number 4 (2012), 450-473.

Dates
First available in Project Euclid: 3 July 2012

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1341320252

Digital Object Identifier
doi:10.1214/11-BJPS183

Mathematical Reviews number (MathSciNet)
MR2949088

Zentralblatt MATH identifier
1319.62063

Keywords
Asymmetric distributions Bayes risk Bayes tests Jeffreys test opinion pools

Citation

Loschi, Rosangela H.; Santos, Cristiano C.; Arellano-Valle, Reinaldo B. Test procedures based on combination of Bayesian evidences for $H_{0}$. Braz. J. Probab. Stat. 26 (2012), no. 4, 450--473. doi:10.1214/11-BJPS183. https://projecteuclid.org/euclid.bjps/1341320252


Export citation

References

  • Arellano-Valle, R. B, Genton, M. G. and Loschi, R. H. (2009). Shape mixtures of multivariate skew-normal distributions. Journal of Multivariate Analysis 100, 91–101.
  • Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistic 12, 171–178.
  • Bayes, C. L. and Branco, M. B. (2007). Bayesian inference for the skewness parameter of the scalar skew-normal distribution. Brazilian Journal of Probability and Statistics 21(2), 141–163.
  • Berger, J. O. and Delampady, M. (1987). Testing precise hypotheses. Statistical Science 2, 317–352.
  • Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association 91, 109–122.
  • Bernardo, J. M. (2011). Integrated objective Bayesian estimation and hypothesis testing (with discussion). In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid and D. Heckerman, eds.) 1–68. Oxford University Press.
  • Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory, 1st ed. Chichester: Wiley.
  • Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. New York: Wiley.
  • Clemen, R. T. and Winkler, R. L. (1999). Combining probability distributions from experts in risk analysis. Risk Analysis 19(2), 187–203.
  • Dahl, D. B. and Newton, M. A. (2007). Multiple Hypothesis testing by clustering treatment effects. Journal of the American Statistical Association 102, 517–525.
  • DeGroot, M. H. (1998). Probability and Statistics, 2nd ed. Boston, MA: Addison Wesley.
  • Fisher, R. A. (1932). Statistical Methods for Research Workers, 4th ed. Edinburg: Oliver and Boyd.
  • French, S. (1985). Group consensus probability distributions: A critical survey. In Bayesian Statistics 2 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 183–202. Amsterdam: North-Holland.
  • Goutis, C., Casella, G. and Wells, M. T. (1996). Assessing evidence in multiple hypotheses. Journal of the American Statistical Association 91(435), 1268–1277.
  • Genest, C., McConway, K. J. and Schervish, M. J. (1986). Characterization of externally Bayesian pooling operators. The Annals of Statistics 14(2), 487–501.
  • Genest, C. and Zidek, J. V. (1986). Combining probability distributions: A critique and an annoted bibliography. Statistical Science 1(1), 114–148.
  • Hwang, J. T., Casella, G., Roberts, C. P., Wells, M. and Farrell, R. (1992). Estimation of accuracy in testing. The Annals of Statistics 20, 490–509.
  • Jeffreys, H. (1961). Theory of Probability. Oxford: Claredon Press.
  • Jozani, M. J., Marchand, E. and Parsian, A. (2010). Bayesian and robust Bayesian analysis under a general class of balanced loss functions. Statistical Papers 53, 51–60.
  • Lavine, M. and Schervish, M. J. (1999). Bayes Factors: What they are and what they are not. The American Statistician 53(2), 119–122.
  • Lindley, D. V. (1957). A statistical paradox. Biometrika 44(1/2), 187–192.
  • Liseo, B. and Loperfido, N. (2006). A note on reference priors for the scalar skew-normal distribution. Journal of Statistical Planning and Inference 136, 373–389.
  • Loschi, R. H., Monteiro, J. V. D., Rocha, G. H. M. A. and Mayrink, V. D. (2007). Testing and estimating the non-disjunction fraction in meiosis I using reference priors. Biometrical Journal 49(6), 824–839.
  • Loughin, T. M. (2004). A systematic comparison of methods for combining $p$-values from independent tests. Computational Statistics and Data Analysis 47, 467–485.
  • Madruga, M. R., Esteves, L. G. and Wechsler, S. (2001). On the Bayesianity of Pereira–Stern tests. Test 10(1), 291–299.
  • Madruga, M. R., Pereira, C. A. B. and Stern, J. M. (2003). Bayesian evidency test for precise hypotheses. Journal of Statistical Planning and Inference 117, 185–198.
  • Migon, H. S. and Gamerman, D. (1999). Statistical Inference: An Integrated Approach. New York: Arnold.
  • Moreno, E. and Liseo, B. (2003). A default Bayesian test for the number of components in a mixture. Journal of Statistical Planning and Inference 111, 129–142.
  • Pereira, C. A. B. and Stern, J. M. (1999). Evidence and credibility: Full Bayesian significance test for precise hypotheses. Entropy 1, 69–80.
  • Pereira, C. A. B. and Stern, J. M. (2001). Model selection: Full Bayesian approach. Envirometrics 12, 559–568.
  • Pereira, C. A. B., Stern, J. M. and Wechsler, S. (2008). Can a significance test be genuinely Bayesian? Bayesian Analysis 3(1), 79–100.
  • Pigeot, I. (2000). Basic concepts of multiple tests—a survey. Statistical Papers 41, 3–36.
  • Robert, C. P. (1993). A note on Jeffreys–Lindley paradox. Statistica Sinica 3, 601–608.
  • Sartori, N. (2006). Bias prevention of maximum likelihood estimates for scalar skew normal and skew $t$ distributions. Journal Statistical Planning and Inference 136, 4259–4275.
  • Scott, J. G. and Berger, J. O. (2006). An exploration of aspects of Bayesian multiple testing. Journal of Statistical Planning and Inference 136, 2144–2162.
  • Tippet, L. H. C. (1931). The Methods of Statistics. London: Williams and Norgate.
  • Tsao, C. A. (2006). A note on Lindley’s paradox. Test 15(1), 125–139.
  • Wassmer, G. (2000). Basic concepts of group sequential and adaptive group sequential test procedures. Statistical Papers 41, 253–279.