Brazilian Journal of Probability and Statistics

Beta-binomial/gamma-Poisson regression models for repeated counts with random parameters

Mayra Ivanoff Lora and Julio M. Singer

Full-text: Open access

Abstract

Beta-binomial/Poisson models have been used by many authors to model multivariate count data. Lora and Singer [Stat. Med. 27 (2008) 3366–3381] extended such models to accommodate repeated multivariate count data with overdipersion in the binomial component. To overcome some of the limitations of that model, we consider a beta-binomial/gamma-Poisson alternative that also allows for both overdispersion and different covariances between the Poisson counts. We obtain maximum likelihood estimates for the parameters using a Newton–Raphson algorithm and compare both models in a practical example.

Article information

Source
Braz. J. Probab. Stat., Volume 25, Number 2 (2011), 218-235.

Dates
First available in Project Euclid: 31 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1301577155

Digital Object Identifier
doi:10.1214/10-BJPS118

Mathematical Reviews number (MathSciNet)
MR2793927

Zentralblatt MATH identifier
1298.62191

Keywords
Bivariate counts longitudinal data overdispersion random effects regression models

Citation

Lora, Mayra Ivanoff; Singer, Julio M. Beta-binomial/gamma-Poisson regression models for repeated counts with random parameters. Braz. J. Probab. Stat. 25 (2011), no. 2, 218--235. doi:10.1214/10-BJPS118. https://projecteuclid.org/euclid.bjps/1301577155


Export citation

References

  • Brooks, S. P., Morgan, B. J. T., Ridout, M. S. and Pack, S. E. (1997). Finite mixture models for proportions. Biometrics 53, 1097–1115.
  • Comulada, W. S. and Weiss, R. E. (2007). On models for binomial data with random number of trials. Biometrics 63, 610–617.
  • Cox, D. R. (1983). Some remarks on overdispersion. Biometrika 70, 269–274.
  • Gange, S. J., Munoz, A., Saez, M. and Alonso, J. (1996). Use of the beta-binomial distribution to model the effect of policy changes on appropriateness of Hospital Stays. Applied Statistics 45, 371–382.
  • Griffiths, D. A. (1973). Maximum likelihood estimation for the beta-binomial distribution and an application to the household distribution of the total number of cases of a disease. Biometrics 29, 637–648.
  • Ho, L. L. and Singer, J. M. (1997). Regression models for bivariate counts. Brazilian Journal of Probability and Statistics 11, 175–197.
  • Ho, L. L. and Singer, J. M. (2001). Generalized least squares methods for bivariate Poisson regression. Communications in Statistics 30, 263–278.
  • Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics: Continuous Univariate Distributions 2. Boston: Houghton Mifflin.
  • Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson models. The Statistician 52, 381–393.
  • Lora, M. I. and Singer, J. M. (2008). Beta-binomial/Poisson models for repeated bivariate counts. Statistics in Medicine 27, 3366–3381.
  • Mood, A. M., Graybill, F. A. and Boes, D. C. (1974). Introduction to the Theory of Statistics. Singapore: McGraw-Hill.
  • Nelder, J. A. and McCullagh, P. (1989). Generalized Linear Models. London: Chapman and Hall.
  • Nelson, J. F. (1985). Multivariate Gamma-Poisson Models. Journal of the American Statistical Association 392, 828–834.
  • Williams, D. A. (1975). The analysis of binary responses from toxicological experiments invloving reproduction and teratogenecity. Biometrics 31, 949–952.
  • Zhu, J., Eickhoff, J. C. and Kaiser, M. S. (2003). Modeling the Dependence between number of trials and success probability in beta-binomial–Poisson mixture distributions. Biometrics 59, 955–961.