Brazilian Journal of Probability and Statistics

An introduction to metastability through random walks

Enzo Olivieri and Elisabetta Scoppola

Full-text: Open access

Abstract

This paper gives a didactic introduction to the problem of metastability by taking elementary examples from the theory of random walks. Some mathematical tools of the theory are presented briefly with precise references. The main ideas used in recent results about the conservative case, are discussed in the last section, through simplified models of random walks.

Article information

Source
Braz. J. Probab. Stat., Volume 24, Number 2 (2010), 361-399.

Dates
First available in Project Euclid: 20 April 2010

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1271770276

Digital Object Identifier
doi:10.1214/09-BJPS035

Mathematical Reviews number (MathSciNet)
MR2643571

Zentralblatt MATH identifier
1200.82042

Keywords
Metastability random walks

Citation

Olivieri, Enzo; Scoppola, Elisabetta. An introduction to metastability through random walks. Braz. J. Probab. Stat. 24 (2010), no. 2, 361--399. doi:10.1214/09-BJPS035. https://projecteuclid.org/euclid.bjps/1271770276


Export citation

References

  • [1] Ashcroft, N. W. and Mermin, N. D. (1976). Solid State Physics. Saunders College, Philadelphia.
  • [2] Ben Arous, G. and Cerf, R. (1996). Metastability of the three-dimensional Ising model on a torus at very low temperature. Electronic Journal of Probability 1.
  • [3] Bovier, A., den Hollander, F. and Nardi, F. R. (2006). Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary. Probability Theory and Related Fields 135 265–310.
  • [4] Bovier, A. and Manzo, F. (2002). Metastability in Glauber dynamics in the low-temperature limit: Beyond exponential asymptotics. Journal of Statistical Physics 107 757–779.
  • [5] Bovier, A., Eckhoff, M., Gayrard, V. and Klein, M. (2001). Metastability in stochastic dynamics of disordered mean field models. Probability Theory and Related Fields 119 99–161.
  • [6] Catoni, O. and Cerf, R. (1995). The exit path of a Markov chain with rare transitions. European Series in Applied and Industrial Mathematics. Probability and Statistics 1 95–144.
  • [7] Cassandro, M., Galves, A., Olivieri, E. and Vares, M. E. (1984). Metastable behavior of stochastic dynamics: A pathwise approach. Journal of Statistical Physics 35 603–634.
  • [8] Cirillo, E. N. M. and Nardi, F. R. (2003). Metastability for a stochastic dynamics with a parallel heat bath updating rule. Journal of Statistical Physics 110 183–217.
  • [9] Cirillo, E. N. M. and Olivieri, E. (1996). Metastability and nucleation for the Blume–Capel model: Different mechanisms of transition. Journal of Statistical Physics 83 473–554.
  • [10] Dehghanpour, P. and Schonmann, R. H. (1997). A nucleation-and-growth model. Probability Theory and Related Fields 107 123–135.
  • [11] Dehghanpour, P. and Schonmann, R. H. (1997). Metropolis dynamics relaxation via nucleation and growth. Communications in Mathematical Physics 188 89–119.
  • [12] den Hollander, F. (2000). Large Deviations. Fields Institute Monographs 14. Amer. Math. Soc., Providence, RI.
  • [13] den Hollander, F., Olivieri, E. and Scoppola, E. (2000). Metastability and nucleation for conservative dynamics. Journal of Mathematical Physics 41 1424–1498.
  • [14] Doyle, P. G. and Snell, J. L. (1984). Random Walks and Electric Networks. Carus Mathematical Monographs 22. Math. Assoc. Amer., Washington, D.C.
  • [15] Freidlin, M. I. and Wentzell, A. D. (1984). Random Perturbations of Dynamical Systems. Springer, New York.
  • [16] Gallavotti, G. (1999). Statistical Mechanics—A Short Treatise. Springer, Berlin.
  • [17] Gaudillière, A. (2009). Collision probability for random trajectories in two dimensions. Stochastic Processes and Their Applications 119 775–810.
  • [18] Gaudillière, A. (2008). Condenser physics applied to Markov chains—A brief introduction to potential theory. In Lecture Notes XII Brazilian School of Probability, Ouro Preto. Available at arXiv:0901.3053v1.
  • [19] Gaudillière, A., den Hollander, F., Nardi, F., Olivieri, E. and Scoppola, E. (2009). Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics. Stochastic Processes and Their Applications 119 737–774.
  • [20] Gaudillière, A., den Hollander, F., Nardi, F. R., Olivieri, E. and Scoppola, E. (2010). Droplet dynamics for a two-dimensional rarefied gas under Kawasaki dynamics. In preparation.
  • [21] Gaudillière, A., den Hollander, F., Nardi, F. R., Olivieri, E. and Scoppola, E. (2010). Homogeneous nucleation for two-dimensional Kawasaki dynamics. In preparation.
  • [22] Gaudillière, A., Olivieri, E. and Scoppola, E. (2005). Nucleation pattern at low temperature for local Kawasaki dynamics in two dimensions. Markov Processes and Related Fields 11 553–628.
  • [23] Häggström, O. (2002). Finite Markov Chains and Algorithmic Applications. London Mathematical Society Student Texts 52. Cambridge Univ. Press, Cambridge.
  • [24] Huang, K. (1987). Statistical Mechanics, 2nd ed. Wiley, New York.
  • [25] Jerrum, M. and Sinclair, A. (1996). The Markov chain Monte Carlo method: An approach to approximate counting and integration In Approximation Algorithms for NP-Hard Problems (D. S. Hochbaum, ed.). PWS Publishing, Boston.
  • [26] Kipnis, C. and Newman, C. M. (1985). The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM Journal on Applied Mathematics 45 972–982.
  • [27] Kotecký, R. and Olivieri, E. (1993). Droplet dynamics for asymmetric Ising model. Journal of Statistical Physics 70 1121–1148.
  • [28] Kotecký, R. and Olivieri, E. (1994). Shapes of growing droplets—A model of escape from a metastable phase. Journal of Statistical Physics 75 409–506.
  • [29] Lebowitz, J. and Penrose, O. (1966). Rigorous treatment of the van der Waals–Maxwell theory of the liquid-vapor transition. Journal of Mathematical Physics 7 98–113.
  • [30] Manzo, F., Nardi, F. R., Olivieri, E. and Scoppola, E. (2004). On the essential features of metastability: Tunneling time and critical configurations. Journal of Statistical Physics 115 591–642.
  • [31] Nardi, F. R. and Olivieri, E. (1996). Low temperature stochastic dynamics for an Ising model with alternating fields. Markov Processes and Related Fields 2 117–166.
  • [32] Nardi, F. R., Olivieri, E. and Scoppola, E. (2005). Anisotropy effects in nucleation for conservative dynamics. Journal of Statistical Physics 119 539–595.
  • [33] Nardi, F. R., Olivieri, E. and Zahradník, M. (1999). On the Ising model with strongly anisotropic field. Journal of Statistical Physics 97 87–144.
  • [34] Neves, E. J. and Schonmann, R. H. (1991). Critical droplets and metastability for a Glauber dynamics at very low temperatures. Communications in Mathematical Physics 137 209–230.
  • [35] Neves, E. J. and Schonmann, R. H. (1992). Behaviour of droplets for a class of Glauber dynamics at very low temperatures. Probability Theory and Related Fields 91 331–354.
  • [36] Olivieri, E. and Scoppola, E. (1995). Markov chains with exponentially small transition probabilities: First exit problem from a general domain. I. The reversible case. Journal of Statistical Physics 79 613–647.
  • [37] Olivieri, E. and Scoppola, E. (1996). Markov chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case. Journal of Statistical Physics 84 987–1041.
  • [38] Olivieri, E. and Scoppola, E. (1998). Metastability and typical exit paths in stochastic dynamics. In European Congress of Mathematics, Vol. II, Budapest, July 22–26, 1996 (Balog, Katona, Recski and Szász, eds.) 124–150. Progress in Mathematics 169. Birkhäuser, Basel.
  • [39] Olivieri, E. and Vares, M. E. (2004). Large Deviations and Metastability. Cambridge Univ. Press, Cambridge.
  • [40] Schonmann, R. H. (1992). The pattern of escape from metastability of a stochastic Ising model. Communications in Mathematical Physics 147 231–240.
  • [41] Schonmann, R. H. (1994). Slow droplet driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region. Communications in Mathematical Physics 161 1–49.
  • [42] Schonmann, R. H. (1994). Theorems and conjectures on the droplet-driven relaxation of stochastic Ising models. In Probability and Phase Transition (G. Grimmett, ed.). NATO ASI Series C 420 265–301. Kluwer, Dordrecht.
  • [43] Schonmann, R. H. and Shlosman, S. (1998). Wulff droplets and the metastable relaxation of kinetic Ising models. Communications in Mathematical Physics 194 389–462.
  • [44] Scoppola, E. (1993). Renormalization group for Markov chains and application to metastability. Journal of Statistical Physics 73 83.
  • [45] Scoppola, E. (1994). Metastability for Markov chains: A general procedure based on renormalization group ideas. In Probability and Phase Transition (G. Grimmett, ed.). NATO ASI Series C 420 303–322. Kluwer, Dordrecht.
  • [46] Scoppola, E. (1995). Renormalization and graph methods for Markov chain. In Advances in Dynamical Systems and Quantum Physics (Capri 1993) 260–281. World Scientific, River Edge, NJ.
  • [47] Wentzell, A. D. (1981). Course in the Theory of Stochastic Processes. McGraw-Hill, New York.