Brazilian Journal of Probability and Statistics

On the optimality of bivariate ranked set sample design for the matched pairs sign test

Hani M. Samawi and Mavis Pararai

Full-text: Open access

Abstract

An optimal alternative bivariate ranked set sample designs for the matched pairs sign test are obtained. Our investigation revealed that the optimal bivariate ranked set sample designs for matched pairs sign test are those with quantifying order statistics with labels {((r+1)/2, (r+1)/2)} when the set size r is odd and {(r/2, r/2), (r/2 + 1, r/2 + 1)} when the set size r is even. The exact null distributions, asymptotic distributions and Pitman efficiencies of those designs are derived. Numerical analysis of the power of the proposed optimal designs is included. An illustration using real data with a bootstrap algorithm for P-value estimation is used.

Article information

Source
Braz. J. Probab. Stat. Volume 24, Number 1 (2010), 24-41.

Dates
First available in Project Euclid: 31 December 2009

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1262271213

Digital Object Identifier
doi:10.1214/08-BJPS010

Mathematical Reviews number (MathSciNet)
MR2751607

Zentralblatt MATH identifier
1298.62070

Keywords
Bivariate ranked set sample bootstrap method power of the test P-value of the test Pitman’s relative efficiency matched pairs sign test

Citation

Samawi, Hani M.; Pararai, Mavis. On the optimality of bivariate ranked set sample design for the matched pairs sign test. Braz. J. Probab. Stat. 24 (2010), no. 1, 24--41. doi:10.1214/08-BJPS010. https://projecteuclid.org/euclid.bjps/1262271213.


Export citation

References

  • Al-Saleh, M. F. and Zheng, G. (2002). Estimation of multiple characteristics using ranked set sampling., Australian and New Zealand Journal of Statistics 44 221–232.
  • Barabesi, L. (1998). The computation of the distribution of the sign test for ranked set sampling., Communication in Statistics Simulation and Computation 27 833–842.
  • Bohn, L. L. and Wolfe, D. A. (1992). Nonparametric two-sample procedures for ranked-set samples data., Journal of the American Statistical Association 87 522–561.
  • Bohn, L. L. and Wolfe, D. A. (1994). The effect of imperfect judgment on ranked-set samples analog of the Mann–Whitney–Wilcoxon statistics., Journal of the American Statistical Association 89 168–176.
  • Brock, D. B., Wineland, T., Freeman, D. H., Lemke, J. H. and Scherr, P. A. (1986). Demographic characteristics. In, Established Population for Epidemiologic Studies of the Elderly. Resource Data Book (J. Cornoni-Huntley, D. B. Brock, A. M. Ostfeld, J. O. Taylor and R. B. Wallace, eds.). National Institute on Aging, NIH Publication No. 86-2443. U.S. Government Printing Office, Washington, DC.
  • Chen, Z. (2000). On ranked-set sample quantiles and their application., Journal of Statistical Planning Inference 83 125–135.
  • Chen, Z. (2001). Optimal ranked-set sampling scheme for inference on population quantiles., Statistica Sinica 11 23–37.
  • Conover, W. J. (1980)., Practical Nonparametric Statistics, 2nd ed. Wiley, New York.
  • Dell, T. R. and Clutter, J. L. (1972). Ranked set sampling theory with order statistics background., Biometrics 28 545–555.
  • Efron, B. and Tibshirani, R. (1993)., An Introduction to the Bootstrap. Chapman and Hall, New York.
  • Halls, L. K. and Dell, T. R. (1966). Trial of ranked set sampling for forage yields., Forest Science 12 22–26.
  • Hennekens, C. H. and Buring, J. E. (1987)., Epidemiology in Medicine. Little, Brown and Company, Boston/Toronto.
  • Hettmansperger, T. P. (1984)., Statistical Inference Based on Ranks. Wiley, New York.
  • Hettmansperger, T. P. (1995). The ranked-set sample sign test., Journal of Nonparametric Statistics 4 263–270.
  • Johnson, M. E. (1987)., Multivariate Statistical Simulation. Wiley, New York.
  • Kaur, A., Patil, G. P., Sinha, A. K. and Taillie, C. (1995). Ranked set sampling: An annotated bibliography., Environmental and Ecological Statistics 2 25–54.
  • Koti, K. M. and Babu, G. J. (1996). Sign test for ranked-set sampling., Communications in Statistics. Theory and Methods 25 1617–1630.
  • Kvam, P. H. and Samaniego, F. J. (1994). Nonparametric maximum likelihood estimation based on ranked set samples., Journal of the American Statistical Association 89 526–537.
  • McIntyre, G. A. (1952). A method for unbiased selective sampling, using ranked sets., Australian Journal of Agriculture Research 3 385–390.
  • Öztürk, Ö. (1999). One and two sample sign tests for ranked set samples with selective designs., Communications in Statistics. Theory and Methods 28 1231–1245.
  • Öztürk, Ö. (2001). A nonparametric test of symmetry versus asymmetry for ranked set samples., Communications in Statistics. Theory and Methods 30 2117–2133.
  • Öztürk, Ö. and Wolfe, D. A. (2000). Alternative ranked set sampling protocols for the sign test., Statistics & Probability Letters 47 15–23.
  • Patil, G. P., Sinha, A. K. and Tillie, C. (1999). Ranked set sampling: A bibliography., Environmental Ecological Statistics 6 91–98.
  • Rubenstein, L. M. and Lemke, J. H. (1993). The construction of self-reported medical condition histories: The Iowa 65+ rural health study. Technical Report No. 93-2. University of Iowa, Dept. Preventive Med. and E., H.
  • Samawi, H. M. (2001). On quantiles estimation using ranked samples with some applications., Journal of the Korean Statistical Society 30 667–678.
  • Samawi, H. M. and Abu-Dayyeh, W. (2003). More powerful sign test using median ranked set sample: Finite sample power comparison., Journal of Statistical Computation and Simulation 73 697–708.
  • Samawi, H. M., Al-haj Ebrahim, M., Al-Zubaidin and Abu-Dayyeh, W. (2009). Optimal sign test for one sample biavriate location model using an alternative bivariate ranked set sample., Journal of Applied Statistics. To appear.
  • Samawi, H. M. and Al-Saleh, M. F. (2004). On biavriate ranked set sampling for distribution and quantile estimation and quantile interval estimation using ratio estimator., Communications in Statistics Theory and Methods 33 1801–1819.
  • Samawi, H. M., Al-Saleh, M. F. and Al-Saidy, O. (2006). Bivariate sign test for on-sample bivariate location model using ranked set sample., Communications in Statistics. Theory and Methods 35 1071–1083.
  • Samawi, H. M., Al-Saleh, M. F. and Al-Saidy, O. (2008). The matched pairs sign test using bivariate ranked set sampling., African Journal of Environmental Science and Technology 2 1–9.
  • Stokes, S. L. and Sager, T. (1988). Characterization of a ranked set sample with application to estimating distribution functions., Journal of the American Statistical Association 83 374–381.
  • Takahasi, K. and Wakimoto, K. (1968). On unbiased estimates of the population mean based on the stratified sampling by means of ordering., Annals of the Institute of Statistical Mathematics 20 1–31.