Brazilian Journal of Probability and Statistics

Bayesian estimation of performance measures of screening tests in the presence of covariates and absence of a gold standard

Edson Zangiacomi Martinez, Francisco Louzada-Neto, Jorge Alberto Achcar, Kari Juhani Syrjänen, Sophie Françoise Mauricette Derchain, Renata Clementino Gontijo, and Luis Otávio Zanatta Sarian

Full-text: Open access

Abstract

The sensitivity (Se) and the specificity (Sp) are the two most common measures of the performance of a diagnostic test, where Se is the probability of a diseased individual to be correctly identified by the test while Sp is the probability of a healthy individual to be correctly identified by the same test. A problem appears when all individuals cannot be verified by a gold standard. This occurs when there is not a definitive test for detection of the disease or the verification by a gold standard is an impracticable procedure according to its cost, accessibility or risks. In this paper we develop a Bayesian analysis to estimate the disease prevalence, the sensitivity and specificity of screening tests in the presence of a covariate and in the absence of a gold standard. We use the Metropolis–Hastings algorithm to obtain the posterior summaries of interest. We have as motivation for the investigation the LAMS (Latin American Screening) Study, an extensive project designed for comparing screening tools for cervical cancer in Brazil and Argentina. When applied to the analysis of data from LAMS Study, the proposed Bayesian method shows to be a useful alternative to estimate measures of performance of screening tests in the presence of covariates and when a gold standard is not available. An advantage of the method is the fact that the number of parameters to be estimated is not limited by the number of observations, as it happens with several frequentist approaches. However, it is important to point out that the Bayesian analysis requires informative priors in order for the parameters to be identifiable. The method can be easily extended for the analysis of other medical data sets.

Article information

Source
Braz. J. Probab. Stat., Volume 23, Number 1 (2009), 68-81.

Dates
First available in Project Euclid: 18 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1245351240

Digital Object Identifier
doi:10.1214/08-BJPS006

Mathematical Reviews number (MathSciNet)
MR2575424

Zentralblatt MATH identifier
1298.62195

Keywords
Bayesian analysis diagnostic tests latent variables biostatistics

Citation

Martinez, Edson Zangiacomi; Louzada-Neto, Francisco; Achcar, Jorge Alberto; Syrjänen, Kari Juhani; Derchain, Sophie Françoise Mauricette; Gontijo, Renata Clementino; Sarian, Luis Otávio Zanatta. Bayesian estimation of performance measures of screening tests in the presence of covariates and absence of a gold standard. Braz. J. Probab. Stat. 23 (2009), no. 1, 68--81. doi:10.1214/08-BJPS006. https://projecteuclid.org/euclid.bjps/1245351240


Export citation

References

  • Begg, C. B. and Greenes, R. A. (1983). Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 39 207–215.
  • Begg, C. B. (1987). Biases in the assessment of diagnostic tests. Statistics in Medicine 6 411–423.
  • Belinson, J. L., Pretorius, R. G., Zhang, W. H., Wu, L. Y., Qiao, Y. L. and Elson, P. (2001). Cervical cancer screening by simple visual inspection after acetic acid. Obstetrics and Gynecology 98 441–444.
  • Box, G. E. P. and Tiao, G. C. (1992). Bayesian Inference in Statistical Analysis, Reprint ed. Wiley, New York.
  • Brenner, H. (1996). How independent are multiple “independent” diagnostic classifications? Statistics in Medicine 15 1377–1386.
  • Carlin, B. P. and Louis, T. A. (2000). Bayes and Empirical Bayes Methods for Data Analysis, 2nd ed. Chapman & Hall/CRC, London.
  • Christensen, J. and Gardner, I. A. (2000). Herd-level interpretation of test results for epidemiologic studies of animal diseases. Preventive Veterinary Medicine 45 83–106.
  • Dendukuri, N. and Joseph, L. (2001). Bayesian approaches to modelling the conditional dependence between multiple diagnostic tests. Biometrics 57 208–217.
  • Enøe, C., Georgiadis, M. P. and Johnson, W. O. (2000). Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown. Preventive Veterinary Medicine 45 61–81.
  • Espeland, M. A. and Handelman, S. L. (1989). Using latent class models to characterize and assess relative error in discrete measurements. Biometrics 45 587–599.
  • Faraone, S. V. and Tsuang, M. T. (1994). Measuring diagnostic accuracy in the absence of a “gold standard.” American Journal of Psychiatry 151 650–657.
  • Gelfand, A. E. and Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association 85 398–409.
  • Gelfand, A. E. (2000). Gibbs sampling. Journal of the American Statistical Association 95 1300–1304.
  • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian Statistics 4 (Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M., eds.) 169–194. Clarendom Press, Oxford.
  • Gontijo, R., Derchain, S., Roteli-Martins, C., Bragança, J., Sarian, L., Morais, S., Maeda, M., Longatto-Filho, A. and Syrjänen, K. (2007). Human papillomavirus (HPV) infections as risk factors for cytological and histological abnormalities in baseline PAP smear-negative women followed-up for 2 years in the LAMS study. European Journal of Obstetrics & Gynecology and Reproductive Biology 133 239–246.
  • Greiner, M. and Gardner, I. A. (2000). Application of diagnostic tests in veterinary epidemiologic studies. Preventive Veterinary Medicine 45 43–59.
  • Hadgu, A. and Qu, Y. A. (1998). Biomedical application of latent models with random effects. Applied Statistics 47 603–616.
  • Hopman, E. H., Kenemans, P. and Helmerhorst, T. J. (1998). Positive predictive rate of colposcopic examination of the cervix uteri: An overview of literature. Obstetrical & Gynecological Survey 53 97–106.
  • Hui, S. L. and Walter, S. D. (1980). Estimating the error rates of diagnostic tests. Biometrics 36 167–171.
  • Hui, S. L. and Zhou, X. H. (1998). Evaluation of diagnostic tests without gold standards. Statistical Methods in Medical Research 7 354–370.
  • Joseph, L., Gyorkos, T. W. and Coupal, L. (1985). Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. American Journal of Epidemiology 141 263–272.
  • Koss, L. G. (2000). Human papillomavirus testing as a screening tool for cervical cancer. Journal of the American Medical Association 283 2525–2526.
  • Martinez, E. Z., Achcar, J. A. and Louzada-Neto, F. (2006). Estimators of sensitivity and specificity in the presence of verification bias: A Bayesian approach. Computational Statistics & Data Analysis 51 601–611.
  • Martinez, E. Z., Achcar, J. A. and Louzada-Neto, F. (2005). Bayesian estimation of diagnostic tests accuracy for semi-latent data with covariates. Journal of Biopharmaceutical Statistics 15 809–821.
  • Mitchell, M. F., Schottenfeld, D., Tortolero-Luna, G., Cantor, S. B. and Richards-Kortum, R. (1998). Colposcopy for the diagnosis of squamous intraepithelial lesions: A meta-analysis. Obstetrics and Gynecology 91 626–631.
  • Nanda, K., McCrory, D. C., Myers, E. R., Bastian, L. A., Hasselblad, V., Hickey, J. D. and Matchar, D. B. (2000). Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: A systematic review. Annals of Internal Medicine 132 810–819.
  • Pouillot, R., Gerbier, G. and Gardner, I. A. (2002). “TAGS”, a program for the evaluation of test accuracy in the absence of a gold standard. Preventive Veterinary Medicine 53 67–81.
  • Qu, Y., Tan, M. and Kutner, M. H. (1996). Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics 52 797–810.
  • Ransohoff, D. F. and Feinstein, A. R. (1978). Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. New England Journal of Medicine 299 926–930.
  • Sarian, L. O., Derchain, S. F., Naud, P., Roteli-Martins, C., Longatto-Filho, A., Tatti, S., Branca, M., Erzen, M., Serpa-Hammes, L., Matos, J., Gontijo, R., Bragança, J. F., Lima, T. P., Maeda, M. Y., Lörincz, A., Dores, G. B., Costa, S., Syrjänen, S. and Syrjänen, K. (2005). Evaluation of visual inspection with acetic acid (VIA), Lugol’s iodine (VILI), cervical cytology and HPV testing as cervical screening tools in Latin America. This report refers to partial results from the LAMS (Latin AMerican Screening) study. Journal of Medical Screening 12 142–149.
  • Schiffman, M., Herrero, R., Hildensheim, A., Sherman, M. E., Bratti, M., Wacholder, S., Alfaro, M., Hutchinson, M., Morales, J., Greenberg, M. D. and Lorincz, A. T. (2000). HPV DNA testing in cervical cancer screening: Results from women in a high-risk province of Costa Rica. Journal of the American Medical Association 283 87–93.
  • Shlay, J. C., Dunn, T., Byers, T., Barón, A. E. and Douglas, J. M. (2000). Prediction of cervical intraepithelial neoplasia grade 2–3 using risk assessment and human papillomavirus testing in women with atypia on Papanicolaou Smears. Obstetrics and Gynecology 96 410–416.
  • Stamey, J. D., Boese, D. H. and Young, D. M. (2008). Confidence intervals for parameters of two diagnostic tests in the absence of a gold standard. Computational Statistics & Data Analysis 52 1335–1346.
  • Syrjänen, K., Naud, P., Derchain, S., Roteli-Martins, C., Longatto-Filho, A., Tatti, S., Branca, M., Erzen, M., Hammes, L. S., Matos, J., Gontijo, R., Sarian, L., Bragança, J., Arlindo, F. C., Maeda, M. Y., Lörincz, A., Dores, G. B., Costa, S. and Syrjänen, S. (2005). Comparing PAP smear cytology, aided visual inspection, screening colposcopy, cervicography and HPV testing as optional screening tools in Latin America. Study design and baseline data of the LAMS study. Anticancer Research 25 3469–3480.
  • Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 82 528–550.
  • Toft, N., Jørgensen, E. and Højsgaard, S. (2005). Diagnosing diagnostic tests: Evaluating the assumptions underlying the estimation of sensitivity and specificity in the absence of a gold standard. Preventive Veterinary Medicine 68 19–33.
  • University of Zimbabwe/JHPIEGO Cervical Cancer Project (1999). Visual inspection with acetic acid for cervical-cancer screening: Test qualities in a primary care setting. The Lancet 353 869–873.
  • Yang, I. and Becker, M. P. (1997). Latent variable modeling of diagnostic accuracy. Biometrics 53 948–958.
  • Wright, T. C. Jr., Lynette, D., Kuhn, L., Pollack, A. and Lorincz, A. (2000). HPV DNA testing of self-collected vaginal samples compared with cytologic screening to detect cervical cancer. Journal of the American Medical Association 283 81–86.
  • Zhou, X. (1983). Maximum likelihood estimators of sensitivity and specificity corrected for verification bias. Communications in Statistics Theory and Methods 22 3177–3198.
  • Zhou, X. H. (1998). Correcting for verification bias in studies of a diagnostic test’s accuracy. Statistical Methods in Medical Research 7 337–353.