## Banach Journal of Mathematical Analysis

### Analytic aspects of evolution algebras

#### Abstract

We prove that every evolution algebra $A$ is a normed algebra, for an $l_{1}$-norm defined in terms of a fixed natural basis. We further show that a normed evolution algebra $A$ is a Banach algebra if and only if $A=A_{1}\oplus A_{0}$, where $A_{1}$ is finite-dimensional and $A_{0}$ is a zero-product algebra. In particular, every nondegenerate Banach evolution algebra must be finite-dimensional and the completion of a normed evolution algebra is therefore not, in general, an evolution algebra. We establish a sufficient condition for continuity of the evolution operator $L_{B}$ of $A$ with respect to a natural basis $B$, and we show that $L_{B}$ need not be continuous. Moreover, if $A$ is finite-dimensional and $B=\{e_{1},\ldots,e_{n}\}$, then $L_{B}$ is given by $L_{e}$, where $e=\sum_{i}e_{i}$ and $L_{a}$ is the multiplication operator $L_{a}(b)=ab$, for $b\in A$. We establish necessary and sufficient conditions for convergence of $(L_{a}^{n}(b))_{n}$, for all $b\in A$, in terms of the multiplicative spectrum $\sigma_{m}(a)$ of $a$. Namely, $(L_{a}^{n}(b))_{n}$ converges, for all $b\in A$, if and only if $\sigma_{m}(a)\subseteq\Delta\cup\{1\}$ and $\nu(1,a)\leq1$, where $\nu(1,a)$ denotes the index of $1$ in the spectrum of $L_{a}$.

#### Article information

Source
Banach J. Math. Anal., Volume 13, Number 1 (2019), 113-132.

Dates
Accepted: 26 May 2018
First available in Project Euclid: 28 November 2018

https://projecteuclid.org/euclid.bjma/1543395629

Digital Object Identifier
doi:10.1215/17358787-2018-0018

Mathematical Reviews number (MathSciNet)
MR3895005

Zentralblatt MATH identifier
07002034

#### Citation

Mellon, P.; Velasco, M. Victoria. Analytic aspects of evolution algebras. Banach J. Math. Anal. 13 (2019), no. 1, 113--132. doi:10.1215/17358787-2018-0018. https://projecteuclid.org/euclid.bjma/1543395629

#### References

• [1] Y. Cabrera-Casado, M. Siles-Molina, and M. V. Velasco, Evolution algebras of arbitrary dimension and their decompositions, Linear Algebra Appl. 495 (2016), 122–162.
• [2] L. M. Camacho, J. R. Gómez, B. A. Omirov, and R. M. Turdibaev, The derivations of some evolution algebras, Linear Multilinear Algebra 61 (2013), no. 3, 309–322.
• [3] L. M. Camacho, J. R. Gómez, B. A. Omirov, and R. M. Turdibaev, Some properties of evolution algebras, Bull. Korean Math. Soc. 50 (2013), no. 5, 1481–1494.
• [4] J. M. Casas, M. Ladra, B. A. Omirov, and U. A. Rozikov, On nilpotent index and dibaricity of evolution algebras, Linear Algebra Appl. 439 (2013), no. 1, 90–105.
• [5] J. M. Casas, M. Ladra, B. A.Omirov, and U. A. Rozikov, On evolution algebras, Algebra Colloq. 21 (2014), no. 2, 331–342.
• [6] J. M. Casas, M. Ladra, and U. A. Rozikov, A chain of evolution algebras, Linear Algebra Appl. 435 (2011), no. 4, 852–870.
• [7] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. (N.S.) 24, Oxford Univ. Press, New York, 2000.
• [8] A. Elduque and A. Labra, Evolution algebras and graphs, J. Algebra Appl. 14 (2015), no. 7, art. ID 1550103.
• [9] I. M. H. Etherington, Genetic algebras, Proc. Roy. Soc. Edinburgh Sect. A 59 (1939), 242–258.
• [10] I. M. H. Etherington, Non-associative algebra and the symbolism of genetics, Proc. Roy. Soc. Edinburgh. Sect. B. 61 (1941), 24–42.
• [11] V. Glivenko, Algèbre mendélienne, C. R. Acad. Sci. URSS 4 (1936), no. 4, 385–386.
• [12] H. S. Jennings, The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage, Genetics 2 (1917), no. 2, 97–154.
• [13] A. Labra, M. Ladra, and U. A. Rozikov, An evolution algebra in population genetics, Linear Algebra Appl. 45 (2014), 348–362.
• [14] M. Ladra, B. A. Omirov, and U. A. Rozikov, Dibaric and evolution algebras in biology, Lobachevskii J. Math. 35 (2014), no. 3, 198–210.
• [15] J. C. Marcos and M. V. Velasco, The Jacobson radical of an non-associative algebra and the uniqueness of the complete norm topology, Bull. Lond. Math. Soc. 42 (2010), no. 6, 1010–1020.
• [16] J. C. Marcos and M. V. Velasco, Continuity of homomorphisms into power-associative complete normed algebras, Forum Math. 25 (2013), no. 6, 1109–1125.
• [17] J. C. Marcos and M. V. Velasco, The multiplicative spectrum and the uniqueness of the complete norm topology, Filomat 28 (2014), no. 3, 473–485.
• [18] G. Mendel, “Experiments in plant-hybridization” in Classic Papers in Genetics, Prentice-Hall, Englewood Cliffs, N.J., 1959, 1–20.
• [19] G. Murphy, Continuity of the spectrum and spectral radius, Proc. Amer. Math. Soc. 82 (1981), no. 4, 619–621.
• [20] R. Oldenburger, Infinite powers of matrices and characteristic roots, Duke Math. J. 6 (1940), 357–361.
• [21] U. A. Rozikov and S. N. Murodov, Dynamics of two-dimensional evolution algebras, Lobachevskii J. Math. 34 (2013), no. 4, 344–358.
• [22] A. Serebrowsky, On the properties of the Mendelian equations (in Russian), Doklady A. N. SSSR. 2 (1934), 33–36.
• [23] G. E. Shilov, Linear Algebra, revised English ed., Dover, New York, 1977.
• [24] J. P. Tian, Evolution Algebras and Their Applications, Lecture Notes in Math. 1921, Springer, Berlin, 2008.
• [25] J. P. Tian and P. Vojtěchovský, Mathematical concepts of evolution algebras in non-Mendelian genetics, Quasigroups Related Systems 14 (2006), no. 1, 111–122.
• [26] J. P. Tian and Y. M. Zou, Finitely generated nil but not nilpotent evolution algebras, J. Algebra Appl. 13 (2014), no. 1, art. ID 1350070.
• [27] M. V. Velasco, Spectral theory for non-associative complete normed algebras and automatic continuity, J. Math. Anal. Appl. 351 (2009), no. 1, 97–106.
• [28] M. V. Velasco, The Jacobson radical of an evolution algebra, to appear in J. Spectr. Theory, preprint, arXiv:1805.08812v1 [math.FA].