Banach Journal of Mathematical Analysis

Lower and upper local uniform K-monotonicity in symmetric spaces

Maciej Ciesielski

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Using the local approach to the global structure of a symmetric space E, we establish a relationship between strict K-monotonicity, lower (resp., upper) local uniform K-monotonicity, order continuity, and the Kadec–Klee property for global convergence in measure. We also answer the question: Under which condition does upper local uniform K-monotonicity coincide with upper local uniform monotonicity? Finally, we present a correlation between K-order continuity and lower local uniform K-monotonicity in a symmetric space E under some additional assumptions on E.

Article information

Banach J. Math. Anal., Volume 12, Number 2 (2018), 314-330.

Received: 14 March 2017
Accepted: 12 April 2017
First available in Project Euclid: 19 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Secondary: 46B20: Geometry and structure of normed linear spaces 46B42: Banach lattices [See also 46A40, 46B40]

symmetric space Lorentz space K-order continuity lower (upper) local uniform K-monotonicity Kadec–Klee property for global convergence in measure


Ciesielski, Maciej. Lower and upper local uniform $K$ -monotonicity in symmetric spaces. Banach J. Math. Anal. 12 (2018), no. 2, 314--330. doi:10.1215/17358787-2017-0047.

Export citation


  • [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, 1988.
  • [2] Y. A. Brudnyi and N. Y. Kruglyak Interpolation Functors and Interpolation Spaces, I, North-Holland Math. Library 47, North-Holland, Amsterdam, 1991.
  • [3] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190.
  • [4] J. Cerdà, H. Hudzik, A. Kamińska, and M. Mastyło, Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces, Positivity 2 (1998), no. 4, 311–337.
  • [5] V. I. Chilin, P. G. Dodds, A. A. Sedaev, and F. A. Sukochev, Characterizations of Kadec-Klee properties in symmetric spaces of measurable functions, Trans. Amer. Math. Soc. 348, no. 12 (1996), 4895–4918.
  • [6] V. I. Chilin and F. A. Sukochev, Weak convergence in non-commutative symmetric spaces, J. Operator Theory 31 (1994), no. 1, 35–65.
  • [7] M. Ciesielski, On geometric structure of symmetric spaces, J. Math. Anal. Appl. 430 (2015), no. 1, 98–125.
  • [8] M. Ciesielski, Hardy-Littlewood-Pólya relation in the best dominated approximation in symmetric spaces, J. Approx. Theory 213 (2017), 78–91.
  • [9] M. Ciesielski, Strict $K$-monotonicity and $K$-order continuity in symmetric spaces, Positivity, published electronically 28 October 2017.
  • [10] M. Ciesielski, P. Kolwicz, and A. Panfil, Local monotonicity structure of symmetric spaces with applications, J. Math. Anal. Appl. 409 (2014), no. 2, 649–662.
  • [11] M. Ciesielski, P. Kolwicz, and R. Płuciennik, A note on strict $K$-monotonicity of some symmetric function spaces, Comment. Math. 53 (2013), no. 2, 311–322.
  • [12] M. Ciesielski, P. Kolwicz, and R. Płuciennik, Local approach to Kadec-Klee properties in symmetric function spaces, J. Math. Anal. Appl. 426 (2015), no. 2, 700–726.
  • [13] M. M. Czerwińska and A. Kamińska, Complex rotundities and midpoint local uniform rotundity in symmetric spaces of measurable operators, Studia Math. 201 (2010), no. 3, 253–285.
  • [14] H. Hudzik, A. Kamińska, and M. Mastyło, On geometric properties of Orlicz-Lorentz spaces, Canad. Math. Bull. 40 (1997), no. 3, 316–329.
  • [15] A. Kamińska and L. Maligranda, On Lorentz spaces $\Gamma_{p,w}$, Israel J. Math. 140 (2004), 285–318.
  • [16] A. Kamińska and L. Maligranda, Order convexity and concavity of Lorentz spaces $\Lambda_{p,w}$, $0<p<\infty$, Studia Math. 160 (2004), no. 3, 267–286.
  • [17] S. G. Krein, Y. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Transl. Math. Monogr. 54, Amer. Math. Soc., Providence, 1982.
  • [18] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, II: Function Spaces, Ergeb. Math. Grenzgeb. 97, Springer, Berlin, 1979.
  • [19] G. G. Lorentz, On the theory of spaces $\Lambda$, Pacific J. Math. 1 (1951), 411–429.
  • [20] G. Pólya and G. Szegő, Problems and Theorems in Analysis, I: Series, Integral Calculus, Theory of Functions, Grundlehren Math. Wiss. 193, Springer, New York, 1972.
  • [21] A. Sparr, “On the conjugate space of the Lorentz space $L(\phi,q)$” in Interpolation Theory and Applications, Contemp. Math. 445, Amer. Math. Soc., Providence, 2007, 313–336.