Banach Journal of Mathematical Analysis

Vector lattices and f-algebras: The classical inequalities

G. Buskes and C. Schwanke

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We present some of the classical inequalities in analysis in the context of Archimedean (real or complex) vector lattices and f-algebras. In particular, we prove an identity for sesquilinear maps from the Cartesian square of a vector space to a geometric mean closed Archimedean vector lattice, from which a Cauchy–Schwarz inequality follows. A reformulation of this result for sesquilinear maps with a geometric mean closed semiprime Archimedean f-algebra as codomain is also given. In addition, a sufficient and necessary condition for equality is presented. We also prove a Hölder inequality for weighted geometric mean closed Archimedean Φ-algebras, substantially improving results by K. Boulabiar and M. A. Toumi. As a consequence, a Minkowski inequality for weighted geometric mean closed Archimedean Φ-algebras is obtained.

Article information

Source
Banach J. Math. Anal. Volume 12, Number 1 (2018), 191-205.

Dates
Received: 9 February 2017
Accepted: 27 March 2017
First available in Project Euclid: 10 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1510283129

Digital Object Identifier
doi:10.1215/17358787-2017-0045

Subjects
Primary: 46A40: Ordered topological linear spaces, vector lattices [See also 06F20, 46B40, 46B42]

Keywords
vector lattice f-algebra Cauchy–Schwarz inequality Hölder inequality Minkowski inequality

Citation

Buskes, G.; Schwanke, C. Vector lattices and $f$ -algebras: The classical inequalities. Banach J. Math. Anal. 12 (2018), no. 1, 191--205. doi:10.1215/17358787-2017-0045. https://projecteuclid.org/euclid.bjma/1510283129


Export citation

References

  • [1] C. D. Aliprantis and O. Burkinshaw,Positive Operators, Pure Appl. Math.119, Academic Press, Orlando, FL, 1985.
  • [2] Y. Azouzi,Square mean closed real Riesz spaces, Ph.D. dissertation, University of Tunis, Tunisia, 2008.
  • [3] Y. Azzouzi, K. Boulabiar, and G. Buskes,The de Schipper formula and squares of Riesz spaces, Indag. Math. (N.S.)17(2006), no. 4, 479–496.
  • [4] S. J. Bernau and C. B. Huijsmans,Almost $f$-algebras and $d$-algebras, Math. Proc. Cambridge Philos. Soc.107(1990), no. 2, 287–308.
  • [5] S. J. Bernau and C. B. Huijsmans,The Schwarz inequality in Archimedean $f$-algebras, Indag. Math. (N.S.)7(1996), no. 2, 137–148.
  • [6] F. Beukers and C. B. Huijsmans,Calculus in $f$-algebras, J. Aust. Math. Soc. Ser. A37(1984), no. 1, 110–116.
  • [7] F. Beukers, C. B. Huijsmans, and B. de Pagter,Unital embedding and complexification of $f$-algebras, Math Z.183(1983), no. 1, 131–144.
  • [8] K. Boulabiar,A Hölder-type inequality for positive functionals on $\Phi$-algebras, J. Inequal. Pure Appl. Math.3(2002), no. 5, art. ID rnm74.
  • [9] K. Boulabiar and G. Buskes,Vector lattice powers: $f$-algebras and functional calculus, Comm. Algebra34(2006), no. 4, 1435–1442.
  • [10] G. Buskes, B. de Pagter, and A. van Rooij,Functional calculus on Riesz spaces, Indag. Math. (N.S.)2(1991), no. 4, 423–436.
  • [11] G. Buskes and C. Schwanke,Complex vector lattices via functional completions, J. Math. Anal. Appl.434(2016), no. 2, 1762–1778.
  • [12] G. Buskes and C. Schwanke,Functional completions of Archimedean vector lattices, Algebra Universalis76(2016), no. 1, 53–69.
  • [13] G. Buskes and A. van Rooij,Almost $f$-algebras: Commutativity and the Cauchy-Schwarz inequality, Positivity4(2000), no. 3, 227–231.
  • [14] G. Buskes and A. van Rooij,Squares of Riesz spaces, Rocky Mountain J. Math.31(2001), no. 1, 45–56.
  • [15] J. B. Conway,A Course in Functional Analysis, 2nd ed., Grad. Texts in Math.96, Springer, New York, 1990.
  • [16] B. de Pagter,$f$-algebras and orthomorphisms, Ph.D. dissertation, Leiden University, Leiden, the Netherlands, 1981.
  • [17] W. J. de Schipper,A note on the modulus of an order bounded linear operator between complex vector lattices, Indag. Math. (N.S.)35(1973), 355–367.
  • [18] A. G. Kusraev,Hölder type inequalities for orthosymmetric bilinear operators, Vladikavkaz. Mat. Zh.9(2007), no. 3, 36–46.
  • [19] W. A. J. Luxemburg and A. C. Zaanen,Riesz Spaces, I, North-Holland, Amsterdam, 1971.
  • [20] L. Maligranda,A simple proof of the Hölder and the Minkowski inequality, Amer. Math. Monthly102(1995), no. 3, 256–259.
  • [21] G. Mittelmeyer and M. Wolff,Über den Absolutbetrag auf komplexen Vektorverbänden, Math. Z.137(1974), 87–92.
  • [22] M. A. Toumi,Exponents in $\mathbb{R}$ of elements in a uniformly complete $\Phi$-algebra, Rend. Istit. Mat. Univ. Trieste40(2008), 29–44.
  • [23] A. C. Zaanen,Riesz Spaces, II, North-Holland Math. Library30, North-Holland, Amsterdam, 1983.