Banach Journal of Mathematical Analysis

Weighted Herz space estimates for Hausdorff operators on the Heisenberg group

Jianmiao Ruan, Dashan Fan, and Qingyan Wu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this article, we study the Hausdorff operator, defined via a general linear mapping A, on weighted Herz spaces in the setting of the Heisenberg group. Under some assumptions on the mapping A, we establish its sharp boundedness on power-weighted Herz spaces and power-weighted Lebesgue spaces in the Heisenberg group. Our proof is heavily based on the block decomposition of the Herz space, which is quite different from any other function spaces. Our results extend and improve some existing theorems.

Article information

Source
Banach J. Math. Anal., Volume 11, Number 3 (2017), 513-535.

Dates
Received: 7 July 2016
Accepted: 18 August 2016
First available in Project Euclid: 19 April 2017

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1492618127

Digital Object Identifier
doi:10.1215/17358787-2017-0004

Mathematical Reviews number (MathSciNet)
MR3679894

Zentralblatt MATH identifier
1370.42020

Subjects
Primary: 42B35: Function spaces arising in harmonic analysis
Secondary: 42B30: $H^p$-spaces 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 22E25: Nilpotent and solvable Lie groups

Keywords
Hausdorff operator Herz space Heisenberg group weight

Citation

Ruan, Jianmiao; Fan, Dashan; Wu, Qingyan. Weighted Herz space estimates for Hausdorff operators on the Heisenberg group. Banach J. Math. Anal. 11 (2017), no. 3, 513--535. doi:10.1215/17358787-2017-0004. https://projecteuclid.org/euclid.bjma/1492618127


Export citation

References

  • [1] A. Baernstein, II, and E. T. Sawyer, Embedding and multiplier theorems for $H^{p}(\textbf{R}^{n})$, Mem. Amer. Math. Soc. 53 (1985), no. 318, 1–82.
  • [2] A. Beurling, Construction and analysis of some convolution algebras, Ann. Inst. Fourier (Grenoble) 14 (1964), no. 2, 1–32.
  • [3] J. Chen, D. Fan, and J. Li, Hausdorff operators on function spaces, Chin. Ann. Math. Ser. B 33 (2012), no. 4, 537–556.
  • [4] J. Chen, D. Fan, X. Lin, and J. Ruan, The fractional Hausdorff operators on the Hardy spaces $H^{p}(\textbf{R}^{n})$, Anal. Math. 42 (2016), no. 1, 1–17.
  • [5] J. Chen, D. Fan, and S. Wang, Hausdorff operators on Euclidean space (A survey article), Appl. Math. J. Chinese Univ. Ser. B 28 (2013), no. 4, 548–564.
  • [6] J. Chen and X. Zhu, Boundedness of multidimensional Hausdorff operators on $H^{1}(\textbf{R}^{n})$, J. Math. Anal. Appl. 409 (2014), no. 1, 428–434.
  • [7] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, Princeton, 1982.
  • [8] V. S. Guliev, Two-weighted $L^{p}$-inequalities for singular integral operators on Heisenberg groups, Georgian Math. J. 1 (1994), no. 4, 367–376.
  • [9] C. S. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968), 283–323.
  • [10] R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 2, 821–843.
  • [11] T. Hytönen, C. Pérez, and E. Rela, Sharp reverse Hölder property for $A_{\infty}$ weights on spaces of homogeneous type, J. Funct. Anal. 263 (2012), no. 12, 3883–3899.
  • [12] S. Indratno, D. Maldonado, and S. Silwal, A visual formalism for weights satisfying reverse inequalities, Expo. Math. 33 (2015), no. 1, 1–29.
  • [13] Y. Kanjin, The Hausdorff operators on the real Hardy spaces $H^{p}(\textbf{R})$, Studia Math. 148 (2001), no. 1, 37–45.
  • [14] A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), no. 2, 309–338.
  • [15] A. K. Lerner and E. Liflyand, Interpolation properties of a scale of spaces, Collect. Math. 54 (2003), no. 2, 153–161.
  • [16] A. K. Lerner and E. Liflyand, Multidimensional Hausdorff operators on the real Hardy space, J. Aust. Math. Soc. 83 (2007), no. 1, 79–86.
  • [17] E. Liflyand, “Open problems on Hausdorff operators” in Complex Analysis and Potential Theory (Gebze, Turkey, 2006), World Science, Hackensack, N.J., 2007, 280–285.
  • [18] E. Liflyand, Boundedness of multidimensional Hausdorff operators on $H^{1}(\textbf{R}^{n})$, Acta Sci. Math. (Szeged) 74 (2008), no. 3–4, 845–851.
  • [19] E. Liflyand, Hausdorff operators on Hardy spaces, Eurasian Math. J. 4 (2013), no. 4, 101–141.
  • [20] E. Liflyand and A. Miyachi, Boundedness of the Hausdorff operators in $H^{p}$ spaces, $0<p<1$, Studia Math. 194 (2009), no. 3, 279–292.
  • [21] E. Liflyand and F. Móricz, The Hausdorff operator is bounded on the real Hardy space $H^{1}(\textbf{R})$, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1391–1396.
  • [22] E. Liflyand and F. Móricz, Commuting relations for Hausdorff operators and Hilbert transforms on real Hardy spaces, Acta Math. Hungar. 97 (2002), no. 1–2, 133–143.
  • [23] M. Liu and S. Lu, The continuity of some operators on Herz-type Hardy spaces on the Heisenberg group, Taiwanese J. Math. 16 (2012), no. 1, 151–164.
  • [24] S. Lu, Y. Ding, and D. Yan, Singular Integrals and Related Topics, World Sci. Publ., Hackensack, N.J., 2007.
  • [25] S. Lu and D. Yang, The decomposition of weighted Herz space on $\textbf{R}^{n}$ and its applications, Sci. China Ser. A 38 (1995), no. 2, 147–158.
  • [26] S. Lu and D. Yang, The weighted Herz-type Hardy space and its applications, Sci. China Ser. A 38 (1995), no. 6, 662–673.
  • [27] S. Lu and D. Yang, Herz-type Sobolev and Bessel potential spaces and their applications, Sci. China Ser. A 40 (1997), no. 2, 113–129.
  • [28] A. Miyachi, Boundedness of the Cesàro operator in Hardy spaces, J. Fourier Anal. Appl. 10 (2004), no. 1, 83–92.
  • [29] F. Móricz, Multivariate Hausdorff operators on the spaces $H^{1}(\textbf{R}^{n})$ and ${\rm BMO(\textbf{R}^{n})}$, Anal. Math. 31 (2005), no. 1, 31–41.
  • [30] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
  • [31] J. Ruan and D. Fan, Hausdorff operators on the power weighted Hardy spaces, J. Math. Anal. Appl. 433 (2016), no. 1, 31–48.
  • [32] J. Ruan and D. Fan, Hausdorff operators on the weighted Herz-type Hardy spaces, Math. Inequal. Appl. 19 (2016), no. 2, 565–587.
  • [33] W. Schempp, Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory, Pitman Res. Notes Math. Ser. 147, Wiley, New York, 1986.
  • [34] F. Weisz, The boundedness of the Hausdorff operator on multi-dimensional Hardy spaces, Analysis (Munich) 24 (2004), no. 2, 183–195.