Banach Journal of Mathematical Analysis

Frames and Riesz bases for Banach spaces, and Banach spaces of vector-valued sequences

Kyugeun Cho, Ju Myung Kim, and Han Ju Lee

Full-text: Open access


This paper is devoted to an investigation of frames and Riesz bases for general Banach sequence spaces. We establish various relationships between Bessel (respectively, frames) and Riesz sequences (respectively, Riesz bases), and then some of their applications are presented. Some recent results for Banach frames and atomic decompositions are sharpened with simple proofs. Banach spaces consisting of Bessel or Riesz sequences are introduced and it is shown that they are isometrically isomorphic to some Banach spaces of bounded linear operators, and that some subspaces of those Banach spaces are isometrically isomorphic to some Banach spaces of compact operators.

Article information

Banach J. Math. Anal., Volume 7, Number 2 (2013), 172 -193 .

First available in Project Euclid: 20 March 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46B15
Secondary: 46B28 46B45

Banach sequence space frame Riesz basis atomic decomposition approximation property


Cho, Kyugeun; Kim, Ju Myung; Lee, Han Ju. Frames and Riesz bases for Banach spaces, and Banach spaces of vector-valued sequences. Banach J. Math. Anal. 7 (2013), no. 2, 172 --193. doi:10.15352/bjma/1363784230.

Export citation


  • F. Albiac and N.J. Kalton, Topics in Banach Space Theory, Springer, New York, 2006.
  • A. Aldroubi, Q. Sun and W. Tang, p-Frames and shift invariant subspaces of $L^{p}$, J. Fourier Anal. Appl. 7 (2001), 1–22.
  • D. Carando and S. Lassalle, Duality, reflexive and atomic decomposition in Banach spaces, Studia Math. 191 (2009), 67–80.
  • D. Carando, S. Lassalle and P. Schmidberg, The reconstruction formula for Banach frames and duality, J. Approx. Theory 163 (2011), 640–651.
  • P.G. Casazza, Approximation Properties, Handbook of the geometry of Banach spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss, eds, Elsevier, Amsterdam (2001), 271–316.
  • P.G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), 129–201.
  • P.G. Casazza, O. Christensen, D. Stoeva, Frame expansions in separable Banach spaces, J. Math. Anal. Appl. 307 (2005), 710–723.
  • P.G. Casazza, D. Han and D.R. Larson, Frames for Banach spaces, Contemp. Math. 247 (1999), 149–182.
  • O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, 2003.
  • O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33–47.
  • O. Christensen and D. Stoeva, p-Frames in separable Banach spaces, Adv. Comput. Math. 18 (2003), 117–126.
  • A.M. Davie, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973), 261–266.
  • J. Diestel, J.H. Fourie and J. Swart, The Metric Theory of Tensor Products, AMS Providence, 2008.
  • J. Diestel and J.J. Uhl, Jr., Vector Measures, AMS Providence, 1977.
  • K. Gröchenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1–41.
  • J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, Springer, Berlin, 1977.
  • R.E. Megginson, An Introduction to Banach Space Theory, Springer, New Nork, 1998.
  • R.A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, Berlin, 2002.
  • D.T. Stoeva, On $p$-frames and reconstruction series in separable Banach spaces, Integral Transforms Spec. Funct. 17 (2006), 127–133.