Banach Journal of Mathematical Analysis

On the boundedness and compactness of a certain integral operator

S. M. Farsani

Full-text: Open access

Abstract

Let $\alpha \in (0, \infty)$ and $\beta \in (1, \infty)$. In the present work, the necessary and sufficient conditions for the boundedness and compactness of the integral operator of the form \begin{equation*} L_{\alpha, \beta} f(x):=v(x)\int_0^x \frac{\ln^{\beta-1}(\frac{x}{y})f(y)u(y)dy}{(x-y)^{1-\alpha}} ,\,\,\,\, x>0, \end{equation*} from $L^p\to L^q$, with locally integrable non-negative weight functions $u$ and $v$, in the case $p,q \in (0, \infty), p>\max(1/{\alpha},1),$ provided $u$ is non-increasing on $\mathbb{R}^+:=[0,\infty)$ are found.

Article information

Source
Banach J. Math. Anal., Volume 7, Number 2 (2013), 86 -102 .

Dates
First available in Project Euclid: 20 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1363784225

Digital Object Identifier
doi:10.15352/bjma/1363784225

Mathematical Reviews number (MathSciNet)
MR3039941

Zentralblatt MATH identifier
1270.26019

Subjects
Primary: 26D10
Secondary: 47G10 26D15 26D07

Keywords
integral operators compactness weights boundedness

Citation

Farsani , S. M. On the boundedness and compactness of a certain integral operator. Banach J. Math. Anal. 7 (2013), no. 2, 86 --102. doi:10.15352/bjma/1363784225. https://projecteuclid.org/euclid.bjma/1363784225


Export citation

References

  • K F. Andersen and E.T. Sawyer, Weighted norm inequalities for the Riemann–Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc. 308 (1988), 547–558.
  • T. Chen and G. Sinnamon, Generalized Hardy operators and normalizing measures, J. Inequal. Appl. 7 (2002), 829–866.
  • A. Gogatishvili and J. Lang, The generalized Hardy operators with kernel and variable integral limits in Banach function spaces, J. Inequal. Appl. 4 (1999), 1–16.
  • G.G. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge University Press, 1934.
  • H.P. Heinig and G. Sinnamon, Mapping properties of integral averaging operators, Studia Math. 129 (1998), 157–177.
  • L.V. Kantorovich and G.P. Akilov, Functional analysis, Nauka, Moscow, 1977 (Russian); Pergamon, Oxford, 1982 (English).
  • V. Kokilashvili and A. Meskhi, Criteria for the boundedness and compactness of operators with power-logarithmic kernels, Anal. Math. 27 (2001), 173–185.
  • M.A. Krasnoselskii et al., Integral operators in spaces of summable functions Nauka, Moscow, 1966 (Russian); Noordhoff International Publishing, Leiden, 1976 (English).
  • A. Kufner and L.-E. Persson, Weighted inequalities of Hardy type, World Scientific, New Jersey. 2003.
  • A. Kufner, L. Maligranda and L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelsky Servis, Pilsen. 2007.
  • E.N. Lomakina and V.D. Stepanov, On the Hardy-type integral operators in Banach function spaces, Publ. Mat. 1, no. 42 (1998), 165–194.
  • M. Lorente, A characterization of two weighted norm inequalities for one-sided operators of fractional type, Canad. J. Math. 49 (1997), 1010–1033.
  • F. Martin-Reyes and E. Sawyer, Weighted inequalities for Riemann–Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc. 106 (1989), 727–733.
  • V.G. Mazya, Sobolev spaces, Springer, 1985.
  • A. Meskhi, Solution of some weight problems for the Riemann–Liouville and Weyl operators, Georgian Math J. 5 (1998), 565–574.
  • A. Meskhi, Criteria for the boundedness and compactness of integral transforms with positive kernels, Proc. Edinburgh Math. Soc. 44 (2001), 267–284.
  • R. Oinarov, Two-sided estimates of the norm of some classes of integral operators, Proc. Steklov Inst. Math. 204, no. 3 (1994), 205–214.
  • B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics, Series 219, Longman Science and Technology, Harlow. 1990.
  • D.V. Prokhorov, On the boundedness and compactness of a class of integral operators, J. London Math. Soc. 61 (2000), no. 2, 617–628.
  • D.V. Prokhorov and V.D. Stepanov, Weighted estimates of Riemann–Liouville operators and applications, Proc. Steklov Inst. Math. 243 (2003), 278–301.
  • G. Sinnamon and V.D. Stepanov, The weighted Hardy inequality: new proofs and the case $p=1$, J. London Math. Soc. 54 (1996), 89–101.
  • V.D. Stepanov, Two-weighted estimates for Riemann–Liouville integrals, Math. USSR-Izv. 36, (1991), 669–681.
  • V.D. Stepanov, Weighted inequalities for a class of Volterra convolution operators, J. London Math. Soc. (2) 45 (1992), 232–242.
  • V.D. Stepanov, Weighted norm inequalities for integral operators and related topics,Nonlinear analysis, function spaces and applications, Vol. 5 (Prague, 1994), 139–175, Prometheus, Prague, 1994.
  • V.D. Stepanov, Weighted norm inequalities of Hardy type for a class of integral operators, J. London Math. Soc. (2) 50 (1994), 105–120.
  • V.D. Stepanov and E.P. Ushakova, On integral operators with variable limits of integration, Proc. Steklov Inst. Math. 232 (2001), 290–309.
  • V.D. Stepanov and E.P.Ushakova, Hardy operator with variable limits on monotone functions, J. Funct. Spaces Appl. 1, no. 1 (2003), 1–15.
  • V.D. Stepanov and E.P. Ushakova, On the geometric mean operator with variable limits of integration, Proc. Steklov Inst. Math. 260 (2008), 254–278.
  • V.D. Stepanov and E.P. Ushakova, On boundedness of a certain class of Hardy–Steklov type operators in Lebesgue spaces, Banach J. Math. Anal. 4 (2010), 28–52.
  • V.D. Stepanov and E.P.Ushakova, Kernel operators with variable intervals of integration in Lebesgue spaces and applications, Math. Inequal. Appl. 13, no. 3 (2010), 449–510.