Banach Journal of Mathematical Analysis

Noncommutative integration

Masamichi Takesaki

Full-text: Open access

Abstract

We will show that if $\mathcal{M}$ is a factor, then for any pair $\varphi ,p\in\mathcal{M}_*^+$ of normal positive linear functionals on $\mathcal{M}$, the inequality: $$ \|\varphi\|\leq \|\psi\| $$ is equivalent to the fact that there exist a countable family $\{\varphi_i : i\in I\}\subset \mathcal{M}_*^+$ in $\mathcal{M}_*^+$ and a family $\{u_i : i\in I\}\subset\mathcal{M}$ of partial isometries in $\mathcal{M}$ such that $$ \varphi=\sum_{ i\in I} \varphi_i,\quad \sum_{ i\in I} u_i{\varphi_i}u_i^*\leq \psi, \quad \text{and} \quad u_i^*u_i=s(\varphi_i), i\in I, $$ where $s(\omega), \omega\in \mathcal{M}_*^+$, means the support projection of $\omega$. Furthermore, if $\|\varphi\|=\|\psi\|$, then the equality replaces the inequality in the second statement. In the case that $\mathcal{M}$ is not of type III$_1$, the family of partial isometries can be replaced by a family of unitaries in $\mathcal{M}$. One cannot expect to have this result in the usual integration theory. To have a similar result, one needs to bring in some kind of non-commutativity. Let $\{X, \mu\}$ be a $\sigma$-finite semifinite measure space and $G$ be an ergodic group of automorphisms of $L^\infty(X,\mu)$, then for a pair $f$ and $g$ of $\mu$-integrable positive functions on $X$, the inequality: $$ \int_X f(x)\text{d} \mu(x)\leq \int_X g(x)\text{d} \mu(x) $$ is equivalent to the existence of a countable families $\{f_i: i\in I\}\subset L^1(X, \mu)$ of positive integrable functions and $\{\gamma_i: i\in I\}$ in $G$ such that $$ f=\sum_{ i\in I} f_i\quad\text{and}\quad \sum_{ i\in I} \gamma_i(f_i)\leq g, $$ where the summation and inequality are all taken in the ordered Banach space $L^1(X, \mu)$ and the action of $G$ on $L^1(X, \mu)$ is defined through the duality between $L^\infty(X, \mu)$ and $L^1(X, \mu)$, i.e., $$ (\gamma(f))(x)=f(\gamma^{-1} x)\frac{d\mu\circ \gamma^{-1}}{d\mu}(x), \quad f\in L^1(X, \mu). $$

Article information

Source
Banach J. Math. Anal., Volume 7, Number 1 (2013), 1-13.

Dates
First available in Project Euclid: 22 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1358864545

Digital Object Identifier
doi:10.15352/bjma/1358864545

Mathematical Reviews number (MathSciNet)
MR3004263

Zentralblatt MATH identifier
1292.46042

Subjects
Primary: 46L10: General theory of von Neumann algebras
Secondary: 46L05: General theory of $C^*$-algebras

Keywords
Noncommutative integration factor positive linear functional

Citation

Takesaki, Masamichi. Noncommutative integration. Banach J. Math. Anal. 7 (2013), no. 1, 1--13. doi:10.15352/bjma/1358864545. https://projecteuclid.org/euclid.bjma/1358864545


Export citation

References

  • A. Connes, Une classification des facteurs de type \threee\!\!, Ann. Scient. Ecole Norm. Sup. (4) 6 (1973), 133–252
  • A. Connes and M. Takesaki, The flow of weights on factors of type \threee\!\!, T$\hat {\text o}$hoku Math. J. 29 (1977), no. 4, 473–575
  • A.J. Falcone and M. Takesaki, Operator valued weights without structure theory, Trans. Amer. Math. Soc. 351 (1999), no. 1, 323–341.
  • A.J. Falcone and M. Takesaki, Non-commutative flow of weights on a von Neumann algebra, J. Funct. Anal. 182 (2001), no. 1, 170–206.
  • R.V. Kadison, G,K. Pedersen, Equivalence in operator algebras, Math. Scand 27 (1970), 205–222 (1971).
  • M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, Vol. 128, Springer-Verlag, Berlin-New York, 1970
  • M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York-Heidelberg, 1979.
  • M. Takesaki, Theory of Operator Algebras I\!I Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6. Springer-Verlag, Berlin, 2003.
  • M. Takesaki, Theory of Operator Algebras I\!I\!I, Encyclopaedia of Mathematical Sciences, 127. Operator Algebras and Non-commutative Geometry, 8. Springer-Verlag, Berlin, 2003.