Banach Journal of Mathematical Analysis

A Cuntz--Krieger uniqueness theorem for semigraph $C^*$-algebras

Bernhard Burgstaller

Full-text: Open access


Higher rank semigraph algebras are introduced by mixing concepts of ultragraph algebras and higher rank graph algebras. This yields a kind of higher rank generalisation of ultragraph algebras. We prove Cuntz--Krieger uniqueness theorems for cancelling semigraph algebras and aperiodic saturated semigraph algebras.

Article information

Banach J. Math. Anal., Volume 6, Number 2 (2012), 38-57.

First available in Project Euclid: 13 July 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L05: General theory of $C^*$-algebras
Secondary: 46L55: Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]

Higher rank semigraph algebra ultragraph labelled graph Cuntz--Krieger uniqueness aperiodic


Burgstaller, Bernhard. A Cuntz--Krieger uniqueness theorem for semigraph $C^*$-algebras. Banach J. Math. Anal. 6 (2012), no. 2, 38--57. doi:10.15352/bjma/1342210159.

Export citation


  • T. Bates and D. Pask, $C^*$-algebras of labelled graphs, J. Oper. Theory 57 (2007), no. 1, 207–226.
  • B. Burgstaller, Representations of crossed products by cancelling actions and applications, Houston J. Math., to appear.
  • B. Burgstaller, A class of higher rank Exel–Laca algebras, Acta Sci. Math. 73 (2007), 209–235.
  • B. Burgstaller and D.G. Evans, On certain properties of Cuntz–Krieger type algebras, preprint, arXiv:1111.4399v1.
  • J. Cuntz, Simple $C^{*}$-algebras generated by isometries, Commun. Math. Phys. 57 (1977), 173–185.
  • J. Cuntz and W. Krieger, A class of $C^{*}$-algebras and topological Markov chains, Invent. Math. 56 (1980), 251–268.
  • M. Enomoto and Y. Watatani, A graph theory for C*-algebras, Math. Jap. 25 (1980), 435–442.
  • R. Exel, Semigroupoid $C^{*}$-algebras, J. Math. Anal. Appl. 377 (2011), no. 1, 303–318.
  • R. Exel and M. Laca, Cuntz–Krieger algebras for infinite matrices, J. Reine Angew. Math. 512 (1999), 119–172.
  • T. Katsura, P.S. Muhly, A. Sims and M. Tomforde, Graph algebras, Exel-Laca algebras and ultragraph algebras coincide up to Morita equivalence, J. Reine Angew. Math. 640 (2010), 135–165.
  • A. Kumjian and D. Pask, Higher rank graph $C^*$-algebras, New York J. Math. 6 (2000), 1–20.
  • A. Kumjian, D. Pask, I. Raeburn and J. Renault, Graphs, groupoids and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), no. 2, 505–541.
  • P. Lewin and A. Sims, Aperiodicity and cofinality for finitely aligned higher-rank graphs, Math. Proc. Camb. Philos. Soc. 149 (2010), no. 2, 333–350.
  • I. Raeburn, A. Sims and T. Yeend, The $C^*$-algebras of finitely aligned higher-rank graphs, J. Funct. Anal. 213 (2004), 206–240.
  • A. Sims, Relative Cuntz–Krieger algebras of finitely aligned higher-rank graphs, Indiana Univ. Math. J. 55 (2006), no. 2, 849–868.
  • M. Tomforde, A unified approach to Exel-Laca algebras and $C^*$-algebras associated to graphs, J. Oper. Theory 50 (2003), no. 2, 345–368.