Banach Journal of Mathematical Analysis

Almost automorphic solutions of hyperbolic evolution equations

Claudio Cuevas, Erwin Henriquez , and Bruno de Andrade

Full-text: Open access

Abstract

In this work we deals with almost automorphic behavior of solutions of a class of semilinear evolution equations. To achieve our goal we use interpolation theory and fixed point theory. As application, we examine sufficient conditions for existence of almost automorphic solutions of equations of the heat conduction theory.

Article information

Source
Banach J. Math. Anal., Volume 6, Number 1 (2012), 90-100.

Dates
First available in Project Euclid: 14 May 2012

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1337014667

Digital Object Identifier
doi:10.15352/bjma/1337014667

Mathematical Reviews number (MathSciNet)
MR2862545

Zentralblatt MATH identifier
1253.34054

Subjects
Primary: 34G20: Nonlinear equations [See also 47Hxx, 47Jxx]
Secondary: 47A55: Perturbation theory [See also 47H14, 58J37, 70H09, 81Q15]

Keywords
Analytic semigroup hyperbolic semigroup almost automorphic function semilinear evolution equation

Citation

de Andrade, Bruno; Cuevas, Claudio; Henriquez , Erwin. Almost automorphic solutions of hyperbolic evolution equations. Banach J. Math. Anal. 6 (2012), no. 1, 90--100. doi:10.15352/bjma/1337014667. https://projecteuclid.org/euclid.bjma/1337014667


Export citation