Banach Journal of Mathematical Analysis

Reverse of the grand Furuta inequality and its applications

Masatoshi Fujii, Ritsuo Nakamoto, and Masaru Tominaga

Full-text: Open access

Abstract

We shall give a norm inequality equivalent to the grand Furuta inequality, and moreover show its reverse as follows: Let $A$ and $B$ be positive operators such that $m \leq B \leq M$ for some positive scalars $m \leq M, m \neq M$ and $h:=\frac{M}{m}$. Then \begin{eqnarray*} \|A^{\frac12}\{A^{-\frac{t}2}(A^{\frac{r}2}B^{\frac{(r-t)\{(p-t)s+r\}}{1-t+r}}A^{\frac{r}2})^{\frac1s}A^{-\frac{t}2}\}^{\frac1p}A^{\frac12}\| \\ \leq K(h^{r-t},\frac{(p-t)s+r}{1-t+r})^{\frac1{ps}} \|A^{\frac{1-t+r}2}B^{r-t}A^{\frac{1-t+r}2}\|^{\frac{(p-t)s+r}{ps(1-t+r)}} \end{eqnarray*} for $0 \leq t \leq 1$, $p \geq 1$, $s \geq 1$ and $r \geq t \geq 0$, where $K(h,p)$ is the generalized Kantorovich constant. As applications, we consider reverses related to the Ando-Hiai inequality.

Article information

Source
Banach J. Math. Anal., Volume 2, Number 2 (2008), 23-30.

Dates
First available in Project Euclid: 21 April 2009

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1240336289

Digital Object Identifier
doi:10.15352/bjma/1240336289

Mathematical Reviews number (MathSciNet)
MR2404100

Zentralblatt MATH identifier
1160.47014

Subjects
Primary: 47A63: Operator inequalities

Keywords
grand Furuta inequality Furuta inequality Lowner-Heinz inequality Araki-Cordes inequality Bebiano-Lemos-Providencia inequality norm inequality, positive operator operator inequality reverse inequality

Citation

Fujii, Masatoshi; Nakamoto, Ritsuo; Tominaga, Masaru. Reverse of the grand Furuta inequality and its applications. Banach J. Math. Anal. 2 (2008), no. 2, 23--30. doi:10.15352/bjma/1240336289. https://projecteuclid.org/euclid.bjma/1240336289


Export citation