Banach Journal of Mathematical Analysis

A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces

Sever S. Dragomir

Full-text: Open access

Abstract

Some recent inequalities for the norm and the numerical radius of linear operators in Hilbert spaces are surveyed.

Article information

Source
Banach J. Math. Anal. Volume 1, Number 2 (2007), 154-175.

Dates
First available in Project Euclid: 21 April 2009

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1240336213

Digital Object Identifier
doi:10.15352/bjma/1240336213

Mathematical Reviews number (MathSciNet)
MR2366098

Zentralblatt MATH identifier
1136.47006

Subjects
Primary: 47A12: Numerical range, numerical radius

Keywords
numerical range numerical radius bounded linear operator Hilbert space

Citation

Dragomir, Sever S. A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces. Banach J. Math. Anal. 1 (2007), no. 2, 154--175. doi:10.15352/bjma/1240336213. https://projecteuclid.org/euclid.bjma/1240336213


Export citation

References

  • M.L. Buzano, Generalizzazione della disiguaglianza di Cauchy-Schwaz(Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405-409 (1974).
  • S.S. Dragomir, Some refinements of Schwarz inequality, Simposional de Matematică şi Aplicaţii, Polytechnical Institute Timişoara, Romania, 1-2 Nov., 1985, 13-16. ZBL 0594:46018.
  • S.S. Dragomir, Some Grüss type inequalities in inner product spaces, J. Ineq. Pure & Appl. Math., 4(2) (2003), Art. 42. [ONLINE http://jipam.vu.edu.au/article.php?sid=280].
  • S.S. Dragomir, A potpourri of Schwarz related inequalities in inner product spaces (I), J. Ineq. Pure & Appl. Math., 6% (3) (2005), Art. 59. [ONLINE http://jipam.vu.edu.au/article.php?sid=532].
  • S.S. Dragomir, A potpourri of Schwarz related inequalities in inner product spaces (II), J. Ineq. Pure & Appl. Math.,7 (1) (2006), Art. 14. [ONLINE http://jipam.vu.edu.au/article.php?sid=619].
  • S.S. Dragomir, Reverse inequalities for the numerical radius of linear operators in Hilbert spaces, Bull. Austral. Math. Soc., 73 (2006), 255-262. Preprint available on line at RGMIA Res. Rep. Coll. 8(2005), Supplement, Article 9, [ONLINE http://rgmia.vu.edu.au/v8(E).html ].
  • S.S. Dragomir, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Demonstratio Mathematica (Poland), XL (2007), No. 2, 411-417. Preprint available on line at RGMIA Res. Rep. Coll.8(2005), Supplement, Article 10, [ONLINE http://rgmia.vu.edu.au/v8(E).html ].
  • S.S. Dragomir, Inequalities for the norm and numerical radius of composite operators in Hilbert spaces, Preprint available on line at RGMIA Res. Rep. Coll. 8 (2005), Supplement, Article 11, [ONLINE http://rgmia.vu.edu.au/v8(E).html ].
  • S.S. Dragomir and J. Sándor, Some inequalities in prehilbertian spaces, Studia Univ. "Babeş% -Bolyai" - Mathematica, 32(1) (1987), 71-78.
  • A. Goldstein, J.V. Ryff and L.E. Clarke, Problem 5473, Amer. Math. Monthly, 75(3) (1968), 309.
  • K.E. Gustafson and D.K.M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997.
  • P.R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Chelsea Pub. Comp, New York, N.Y., 1972.