Banach Journal of Mathematical Analysis

The hyperbolic square and Mobius transformations

Abraham A. Ungar

Full-text: Open access

Abstract

Professor Themistocles M. Rassias' special predilection and contribution to the study of Mobius transformations is well known. Mobius transformations of the open unit disc of the complex plane and, more generally, of the open unit ball of any real inner product space, give rise to Mobius addition in the ball. The latter, in turn, gives rise to Mobius gyrovector spaces that enable the Poincare ball model of hyperbolic geometry to be approached by gyrovector spaces, in full analogy with the common vector space approach to the standard model of Euclidean geometry. The purpose of this paper, dedicated to Professor Themistocles M. Rassias, is to employ the Mobius gyrovector spaces for the introduction of the hyperbolic square in the Poincare ball model of hyperbolic geometry. We will find that the hyperbolic square is richer in structure than its Euclidean counterpart.

Article information

Source
Banach J. Math. Anal., Volume 1, Number 1 (2007), 101-116.

Dates
First available in Project Euclid: 21 April 2009

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1240321560

Digital Object Identifier
doi:10.15352/bjma/1240321560

Mathematical Reviews number (MathSciNet)
MR2350199

Zentralblatt MATH identifier
1129.30027

Subjects
Primary: 51B10: Möbius geometries
Secondary: 51M10: Hyperbolic and elliptic geometries (general) and generalizations 30F45: Conformal metrics (hyperbolic, Poincaré, distance functions) 20N05: Loops, quasigroups [See also 05Bxx]

Keywords
hyperbolic square Mobius transformation hyperbolic geometry gyrogroups gyrovector spaces

Citation

Ungar, Abraham A. The hyperbolic square and Mobius transformations. Banach J. Math. Anal. 1 (2007), no. 1, 101--116. doi:10.15352/bjma/1240321560. https://projecteuclid.org/euclid.bjma/1240321560


Export citation

References

  • L.V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Book Co., New York, 1973.
  • L.V. Ahlfors, Möbius Transformations in Several Dimensions, Univ. Minn. Sch. Math., Minneapolis, Minn., 1981.
  • M. Atiyah and D. Iagolnitzer, Fields Medalists' Lectures, World Sci. Publ. Co. Inc., London, New Jersey, 2003.
  • C. Andreian Cazacu, O.E. Lehto, and Th.M. Rassias, Analysis and Topology, World Sci. Publ., Singapore, New Jersey, London, 1998.
  • M. Craioveanu, M. Puta, and Th.M. Rassias, Old and new aspects in spectral geometry, volume 534 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2001.
  • S.D., Fisher,Complex Variables, Dover Publications Inc., Mineola, NY, 1999,
  • T. Foguel and A.A. Ungar, Involutory decomposition of groups into twisted subgroups and subgroups, J. Group Theory, 3(1) (2000), 27–46.
  • T. Foguel and A.A. Ungar, Gyrogroups and the decomposition of groups into twisted subgroups and subgroups, Pacific. J. Math, 197 (2001), no. 1, 1–11.
  • R.E. Greene and S.G. Krantz, Function Theory of One Complex Variable, John Wiley & Sons Inc., New York, 1997.
  • H. Haruki and Th.M. Rassias, A new invariant characteristic property of Möbius transformations from the standpoint of conformal mapping, J. Math. Anal. Appl., 181 (1994), 320–327.
  • H. Haruki and Th.M. Rassias, A new characteristic of Möbius transformations by use of Apollonius points of triangles, J. Math. Anal. Appl., 197 (1996), 14–22.
  • H. Haruki and Th.M. Rassias, A new characteristic of Möbius transformations by use of Apollonius quadrilaterals, Proc. Amer. Math. Soc., 126 (1998), no. 10, 2857–2861.
  • H. Haruki and Th.M. Rassias., A new characterization of Möbius transformations by use of Apollonius hexagons, Proc. Amer. Math. Soc., 128 (2000), no. 7, 2105–2109.
  • J.E. Marsden, Elementary Classical Analysis, W.H. Freeman and Co., San Francisco, 1974.
  • G.V. Milovanović, D.S. Mitrinović, and Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co. Inc., River Edge, NJ, 1994.
  • T., Needham,Visual Complex Analysis, The Clarendon Press Oxford University Press, New York, 1997.
  • A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 2004.
  • A. Prástaro and Th.M. Rassias, Geometry of Partial Differential Equations, World Scientific Publishing Co. Inc., London, New Jersey, 1994.
  • Th.M. Rassias, Constantin Caratheodory: An International Tribute (in two volumes), World Sci. Publishing, Singapore, New Jersey, London, 1991.
  • Th.M. Rassias, The problem of Plateau, World Scientific Publishing Co. Inc., London, New Jersey, 1992.
  • Th.M. Rassias, Inner Product Spaces and Applications. Addison Wesley Longman, Pitman Research Notes in Mathematics Series, No. 376, Harlo, Essex, 1997.
  • Th.M. Rassias and H.M. Srivastava, Analysis, Geometry and Groups: A Riemann Legacy (in two volumes), Hadronic Press Inc., Florida, 1993.
  • J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, volume 149 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1994.
  • A.A. Ungar, Thomas rotation and the parametrization of the Lorentz transformation group, Found. Phys. Lett., 1 (1988), no.1, 57–89.
  • A.A. Ungar, Quasidirect product groups and the Lorentz transformation group, In Th.M. Rassias (ed.): Constantin Carathéodory: an international tribute, Vol. I, II, pages 1378–1392. World Sci. Publishing, Teaneck, NJ, 1991.
  • A.A. Ungar, Midpoints in gyrogroups, Found. Phys., 26 (1996), no. 10, 1277–1328.
  • A.A. Ungar, Gyrovector spaces in the service of hyperbolic geometry, In Th.M. Rassias (ed.): Mathematical analysis and applications, pages 305–360. Hadronic Press, Palm Harbor, FL, 2000.
  • A.A. Ungar, Möbius transformations of the ball, Ahlfors' rotation and gyrovector spaces, In Th.M. Rassias (ed.): Nonlinear analysis in geometry and topology, pages 241–287. Hadronic Press, Palm Harbor, FL, 2000.
  • A.A., Ungar,Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces, volume 117 of Fundamental Theories of Physics, Kluwer Academic Publishers Group, Dordrecht, 2001.
  • A.A. Ungar, Analytic Hyperbolic Geometry: Mathematical Foundations and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
  • A.A. Ungar, Gyrovector spaces and their differential geometry, Nonlinear Funct. Anal. Appl., 10 (2005), no. 5, 791–834.
  • A.A. Ungar, From Möbius to gyrogroups, Amer. Math. Monthly (to appear).
  • A.A. Ungar, Gyrogroups, the special grouplike loops in the service of hyperbolic geometry and Einstein's special theory of relativity, Quasigroups Related System, 15 (2007), 141–168.
  • J. Vermeer, A geometric interpretation of Ungar's addition and of gyration in the hyperbolic plane, Topology Appl., 152 (2005), no. 3, 226–242.