Bernoulli

Multiple testing of local maxima for detection of peaks on the (celestial) sphere

Dan Cheng, Valentina Cammarota, Yabebal Fantaye, Domenico Marinucci, and Armin Schwartzman

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We present a topological multiple testing scheme for detecting peaks on the sphere under isotropic Gaussian noise, where tests are performed at local maxima of the observed field filtered by the spherical needlet transform. Our setting is different from the standard Euclidean large domain asymptotic framework, yet highly relevant to realistic experimental circumstances for some important areas of application in astronomy, namely point-source detection in cosmic Microwave Background radiation (CMB) data. Motivated by this application, we shall focus on cases where a single realization of a smooth isotropic Gaussian random field on the sphere is observed, and a number of well-localized signals are superimposed on such background field. The proposed algorithms, combined with the Benjamini–Hochberg procedure for thresholding p-values, provide asymptotic control of the False Discovery Rate (FDR) and power consistency as the signal strength and the frequency of the needlet transform get large.

Article information

Source
Bernoulli, Volume 26, Number 1 (2020), 31-60.

Dates
Received: May 2017
Revised: June 2018
First available in Project Euclid: 26 November 2019

Permanent link to this document
https://projecteuclid.org/euclid.bj/1574758821

Digital Object Identifier
doi:10.3150/18-BEJ1068

Mathematical Reviews number (MathSciNet)
MR4036027

Zentralblatt MATH identifier
07140492

Keywords
CMB false discovery rate Gaussian random fields height distribution needlet transform overshoot distribution power sphere

Citation

Cheng, Dan; Cammarota, Valentina; Fantaye, Yabebal; Marinucci, Domenico; Schwartzman, Armin. Multiple testing of local maxima for detection of peaks on the (celestial) sphere. Bernoulli 26 (2020), no. 1, 31--60. doi:10.3150/18-BEJ1068. https://projecteuclid.org/euclid.bj/1574758821


Export citation

References

  • [1] Baldi, P., Kerkyacharian, G., Marinucci, D. and Picard, D. (2009). Asymptotics for spherical needlets. Ann. Statist. 37 1150–1171.
  • [2] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300.
  • [3] Cammarota, V., Marinucci, D. and Wigman, I. (2016). On the distribution of the critical values of random spherical harmonics. J. Geom. Anal. 26 3252–3324.
  • [4] Cheng, D., Cammarota, V., Fantaye, Y., Marinucci, D. and Schwartzman, A. (2020). Supplement to “Multiple testing of local maxima for detection of peaks on the (celestial) sphere.” https://doi.org/10.3150/18-BEJ1068SUPP.
  • [5] Cheng, D. and Schwartzman, A. (2015). Distribution of the height of local maxima of Gaussian random fields. Extremes 18 213–240.
  • [6] Cheng, D. and Schwartzman, A. (2017). Multiple testing of local maxima for detection of peaks in random fields. Ann. Statist. 45 529–556.
  • [7] Cheng, D. and Schwartzman, A. (2018). Expected number and height distribution of critical points of smooth isotropic Gaussian random fields. Bernoulli 24 3422–3446.
  • [8] Delabrouille, J. et al. (2013). The pre-launch Planck Sky Model: A model of sky emission at submillimetre to centimetre wavelengths. Astron. Astrophys. 553 A96.
  • [9] Durrer, R. (2008). The Cosmic Microwave Background. Cambridge: Cambridge Univ. Press.
  • [10] Geller, D. and Mayeli, A. (2009). Continuous wavelets on compact manifolds. Math. Z. 262 895–927. Available at arXiv:0811.4440.
  • [11] Geller, D. and Mayeli, A. (2009). Nearly tight frames and space-frequency analysis on compact manifolds. Math. Z. 263 235–264. Available at arXiv:0706.3642.
  • [12] Górski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M. and Bartelmann, M. (2005). HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 699 759–771.
  • [13] Lan, X. and Marinucci, D. (2009). On the dependence structure of wavelet coefficients for spherical random fields. Stochastic Process. Appl. 119 3749–3766.
  • [14] Loh, W.-L. (2005). Fixed-domain asymptotics for a subclass of Matérn-type Gaussian random fields. Ann. Statist. 33 2344–2394.
  • [15] Marinucci, D. and Peccati, G. (2011). Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series 389. Cambridge: Cambridge Univ. Press.
  • [16] Marinucci, D. and Peccati, G. (2013). Mean-square continuity on homogeneous spaces of compact groups. Electron. Commun. Probab. 18 no. 37, 10.
  • [17] Marinucci, D., Pietrobon, D., Balbi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P., Picard, D. and Vittorio, N. (2008). Spherical needlets for CMB data analysis. Mon. Not. R. Astron. Soc. 383 539–545.
  • [18] Mayeli, A. (2010). Asymptotic uncorrelation for Mexican needlets. J. Math. Anal. Appl. 363 336–344.
  • [19] Narcowich, F.J., Petrushev, P. and Ward, J.D. (2006). Localized tight frames on spheres. SIAM J. Math. Anal. 38 574–594.
  • [20] Planck Collaboration (2016). Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 594 A1. Available at arXiv:1507.02704.
  • [21] Planck Collaboration (2016). Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters. Astron. Astrophys. 594 A11. Available at arXiv:1507.02704.
  • [22] Planck Collaboration (2016). Planck 2015. XXVI. The second Planck catalogue of compact sources. Astron. Astrophys. 594 A26.
  • [23] Schwartzman, A., Gavrilov, Y. and Adler, R.J. (2011). Multiple testing of local maxima for detection of peaks in 1D. Ann. Statist. 39 3290–3319.
  • [24] Scodeller, S., Hansen, F.K. and Marinucci, D. (2012). Detection of new point sources in WMAP 7 year data using internal templates and needlets. Astrophys. J. 753 27. Available at arXiv:1201.5852.
  • [25] Scodeller, S., Rudjord, O., Hansen, F.K., Marinucci, D., Geller, D. and Mayeli, A. (2011). Introducing Mexican needlets for CMB analysis: Issues for practical applications and comparison with standard needlets. Astrophys. J. 733 121.

Supplemental materials

  • Supplement: Proofs of the main results. We provide the proofs of Proposition 3.3 and Theorem 5.5.