Bernoulli
- Bernoulli
- Volume 25, Number 4A (2019), 2793-2823.
Self-normalized Cramér type moderate deviations for martingales
Xiequan Fan, Ion Grama, Quansheng Liu, and Qi-Man Shao
Abstract
Let $(X_{i},\mathcal{F}_{i})_{i\geq 1}$ be a sequence of martingale differences. Set $S_{n}=\sum_{i=1}^{n}X_{i}$ and $[S]_{n}=\sum_{i=1}^{n}X_{i}^{2}$. We prove a Cramér type moderate deviation expansion for $\mathbf{P}(S_{n}/\sqrt{[S]_{n}}\geq x)$ as $n\to +\infty $. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for independent random variables.
Article information
Source
Bernoulli, Volume 25, Number 4A (2019), 2793-2823.
Dates
Received: February 2018
Revised: June 2018
First available in Project Euclid: 13 September 2019
Permanent link to this document
https://projecteuclid.org/euclid.bj/1568362043
Digital Object Identifier
doi:10.3150/18-BEJ1071
Mathematical Reviews number (MathSciNet)
MR4003565
Zentralblatt MATH identifier
07110112
Keywords
Cramér’s moderate deviations martingales self-normalized sequences
Citation
Fan, Xiequan; Grama, Ion; Liu, Quansheng; Shao, Qi-Man. Self-normalized Cramér type moderate deviations for martingales. Bernoulli 25 (2019), no. 4A, 2793--2823. doi:10.3150/18-BEJ1071. https://projecteuclid.org/euclid.bj/1568362043
Supplemental materials
- Supplement to “Self-normalized Cramér type moderate deviations for martingales”. The supplement gives the detailed proofs of Propositions 3.1 and 3.2.Digital Object Identifier: doi:10.3150/18-BEJ1071SUPPSupplemental files are immediately available to subscribers. Non-subscribers gain access to supplemental files with the purchase of the article.