Bernoulli

  • Bernoulli
  • Volume 25, Number 2 (2019), 793-827.

Expansion for moments of regression quantiles with applications to nonparametric testing

Enno Mammen, Ingrid Van Keilegom, and Kyusang Yu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We discuss nonparametric tests for parametric specifications of regression quantiles. The test is based on the comparison of parametric and nonparametric fits of these quantiles. The nonparametric fit is a Nadaraya–Watson quantile smoothing estimator.

An asymptotic treatment of the test statistic requires the development of new mathematical arguments. An approach that makes only use of plugging in a Bahadur expansion of the nonparametric estimator is not satisfactory. It requires too strong conditions on the dimension and the choice of the bandwidth.

Our alternative mathematical approach requires the calculation of moments of Nadaraya–Watson quantile regression estimators. This calculation is done by application of higher order Edgeworth expansions.

Article information

Source
Bernoulli, Volume 25, Number 2 (2019), 793-827.

Dates
Received: December 2015
Revised: May 2017
First available in Project Euclid: 6 March 2019

Permanent link to this document
https://projecteuclid.org/euclid.bj/1551862835

Digital Object Identifier
doi:10.3150/17-BEJ986

Mathematical Reviews number (MathSciNet)
MR3920357

Zentralblatt MATH identifier
07049391

Keywords
Bahadur expansions goodness-of-fit tests kernel smoothing nonparametric regression nonparametric testing quantiles

Citation

Mammen, Enno; Van Keilegom, Ingrid; Yu, Kyusang. Expansion for moments of regression quantiles with applications to nonparametric testing. Bernoulli 25 (2019), no. 2, 793--827. doi:10.3150/17-BEJ986. https://projecteuclid.org/euclid.bj/1551862835


Export citation

References

  • [1] Aït-Sahalia, Y., Fan, J. and Peng, H. (2009). Nonparametric transition-based tests for jump diffusions. J. Amer. Statist. Assoc. 104 1102–1116.
  • [2] Angrist, J., Chernozhukov, V. and Fernández-Val, I. (2006). Quantile regression under misspecification, with an application to the U.S. wage structure. Econometrica 74 539–563.
  • [3] Bhattacharya, R.N. and Ranga Rao, R. (1976). Normal Approximation and Asymptotic Expansions. Wiley Series in Probability and Mathematical Statistics Wiley, New York.
  • [4] Bierens, H.J. and Ginther, D. (2001). Integrated conditional moment testing of quantile regression models. Empir. Econ. 26 307–324.
  • [5] Chao, S.-K., Volgushev, S. and Cheng, G. (2017). Quantile processes for semi and nonparametric regression. Electron. J. Stat. 11 3272–3331.
  • [6] Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local Bahadur representation. Ann. Statist. 19 760–777.
  • [7] Conde-Amboage, M., Sánchez-Sellero, C. and González-Manteiga, W. (2015). A lack-of-fit test for quantile regression models with high-dimensional covariates. Comput. Statist. Data Anal. 88 128–138.
  • [8] De Backer, M., El Ghouch, A. and Van Keilegom, I. (2017). Semiparametric copula quantile regression for complete or censored data. Electron. J. Stat. 11 1660–1698.
  • [9] de Jong, P. (1987). A central limit theorem for generalized quadratic forms. Probab. Theory Related Fields 75 261–277.
  • [10] Dette, H. and Spreckelsen, I. (2004). Some comments on specification tests in nonparametric absolutely regular processes. J. Time Series Anal. 25 159–172.
  • [11] El Ghouch, A. and Van Keilegom, I. (2009). Local linear quantile regression with dependent censored data. Statist. Sinica 19 1621–1640.
  • [12] Engel, E. (1857). Die vorherrschenden Gewerbszweige in den Gerichtsämtern mit Beziehung auf die Productions- und Consumtionsverhältnisse des Königreichs Sachsen. II. Das Gesetz der Dichtigkeit. Zeitschrift des statistischen Bureaus des Königlich Sächsischen Ministerium des Inneren 3 8–9 153–182.
  • [13] Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29 153–193.
  • [14] Gao, J. and Hong, Y. (2008). Central limit theorems for generalized $U$-statistics with applications in nonparametric specification. J. Nonparametr. Stat. 20 61–76.
  • [15] González Manteiga, W. and Cao, R. (1993). Testing the hypothesis of a general linear model using nonparametric regression estimation. TEST 2 161–188.
  • [16] Guerre, E. and Lavergne, P. (2002). Optimal minimax rates for nonparametric specification testing in regression models. Econometric Theory 18 1139–1171.
  • [17] Guerre, E. and Sabbah, C. (2012). Uniform bias study and Bahadur representation for local polynomial estimators of the conditional quantile function. Econometric Theory 28 87–129.
  • [18] Haag, B.R. (2008). Non-parametric regression tests using dimension reduction techniques. Scand. J. Stat. 35 719–738.
  • [19] Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926–1947.
  • [20] He, X. and Ng, P. (1999). Quantile splines with several covariates. J. Statist. Plann. Inference 75 343–352. The Seventh Eugene Lukacs Conference (Bowling Green, OH, 1997).
  • [21] He, X., Ng, P. and Portnoy, S. (1998). Bivariate quantile smoothing splines. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 537–550.
  • [22] He, X. and Zhu, L.-X. (2003). A lack-of-fit test for quantile regression. J. Amer. Statist. Assoc. 98 1013–1022.
  • [23] Hjellvik, V., Yao, Q. and Tjøstheim, D. (1998). Linearity testing using local polynomial approximation. J. Statist. Plann. Inference 68 295–321.
  • [24] Hoderlein, S. and Mammen, E. (2009). Identification and estimation of local average derivatives in non-separable models without monotonicity. Econom. J. 12 1–25.
  • [25] Hong, S.-Y. (2003). Bahadur representation and its applications for local polynomial estimates in nonparametric $M$-regression. J. Nonparametr. Stat. 15 237–251.
  • [26] Horowitz, J.L. and Spokoiny, V.G. (2002). An adaptive, rate-optimal test of linearity for median regression models. J. Amer. Statist. Assoc. 97 822–835.
  • [27] Ingster, Yu.I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. I. Math. Methods Statist. 2 85–114.
  • [28] Ingster, Yu.I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. II. Math. Methods Statist. 2 171–189.
  • [29] Ingster, Yu.I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. III. Math. Methods Statist. 2 249–268.
  • [30] Koenker, R. (2005). Quantile Regression. Econometric Society Monographs 38. Cambridge Univ. Press, Cambridge.
  • [31] Koenker, R. and Machado, J.A.F. (1999). Goodness of fit and related inference processes for quantile regression. J. Amer. Statist. Assoc. 94 1296–1310.
  • [32] Koenker, R. and Xiao, Z. (2002). Inference on the quantile regression process. Econometrica 70 1583–1612.
  • [33] Kong, E., Linton, O. and Xia, Y. (2010). Uniform Bahadur representation for local polynomial estimates of $M$-regression and its application to the additive model. Econometric Theory 26 1529–1564.
  • [34] Kreiss, J.-P., Neumann, M.H. and Yao, Q. (2008). Bootstrap tests for simple structures in nonparametric times series regression. Stat. Interface 1 367–380.
  • [35] Lee, Y.K. and Lee, E.R. (2008). Kernel methods for estimating derivatives of conditional quantiles. J. Korean Statist. Soc. 37 365–373.
  • [36] Leucht, A. (2012). Degenerate $U$- and $V$-statistics under weak dependence: Asymptotic theory and bootstrap consistency. Bernoulli 18 552–585.
  • [37] Li, Q. and Racine, J.S. (2008). Nonparametric estimation of conditional CDF and quantile functions with mixed categorical and continuous data. J. Bus. Econom. Statist. 26 423–434.
  • [38] Rothe, C. and Wied, D. (2013). Misspecification testing in a class of conditional distributional models. J. Amer. Statist. Assoc. 108 314–324.
  • [39] Su, L. and White, H.L. (2012). Conditional independence specification testing for dependent processes with local polynomial quantile regression. In Essays in Honor of Jerry Hausman. Adv. Econom. 29 355–434. Emerald, Bingley.
  • [40] Truong, Y.K. (1989). Asymptotic properties of kernel estimators based on local medians. Ann. Statist. 17 606–617.
  • [41] Volgushev, S., Birke, M., Dette, H. and Neumeyer, N. (2013). Significance testing in quantile regression. Electron. J. Stat. 7 105–145.
  • [42] Volgushev, S., Chao, S. and Cheng, G. (2017). Distributed inference for quantile regression processes. Preprint. Available at arXiv:1701.060088v3.
  • [43] Yu, K. and Jones, M.C. (1998). Local linear quantile regression. J. Amer. Statist. Assoc. 93 228–237.
  • [44] Zheng, J.X. (1996). A consistent test of functional form via nonparametric estimation techniques. J. Econometrics 75 263–289.
  • [45] Zheng, J.X. (1998). A consistent nonparametric test of parametric regression models under conditional quantile restrictions. Econometric Theory 14 123–138.