Bernoulli

  • Bernoulli
  • Volume 24, Number 2 (2018), 1171-1201.

Determinantal point process models on the sphere

Jesper Møller, Morten Nielsen, Emilio Porcu, and Ege Rubak

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider determinantal point processes on the $d$-dimensional unit sphere $\mathbb{S}^{d}$. These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function defined on $\mathbb{S}^{d}\times\mathbb{S}^{d}$. We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on $\mathbb{S}^{d}$, where it becomes essential to specify the eigenvalues and eigenfunctions in a spectral representation for the kernel, and we figure out how repulsive isotropic DPPs can be. Moreover, we discuss the shortcomings of adapting existing models for isotropic covariance functions and consider strategies for developing new models, including a useful spectral approach.

Article information

Source
Bernoulli, Volume 24, Number 2 (2018), 1171-1201.

Dates
Received: October 2015
Revised: July 2016
First available in Project Euclid: 21 September 2017

Permanent link to this document
https://projecteuclid.org/euclid.bj/1505980893

Digital Object Identifier
doi:10.3150/16-BEJ896

Mathematical Reviews number (MathSciNet)
MR3706791

Zentralblatt MATH identifier
06778362

Keywords
isotropic covariance function joint intensities quantifying repulsiveness Schoenberg representation spatial point process density spectral representation

Citation

Møller, Jesper; Nielsen, Morten; Porcu, Emilio; Rubak, Ege. Determinantal point process models on the sphere. Bernoulli 24 (2018), no. 2, 1171--1201. doi:10.3150/16-BEJ896. https://projecteuclid.org/euclid.bj/1505980893


Export citation

References

  • [1] Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical Functions. New York: Dover Publications.
  • [2] Baddeley, A., Rubak, E. and Turner, R. (2015). Spatial Point Patterns: Methodology and Applications with R. London: Chapman & Hall.
  • [3] Berg, C. and Porcu, E. (2016). From Schoenberg coefficients to Schoenberg functions. Constructive approximation. Constr. Approx. To appear.
  • [4] Biscio, C.A.N. and Lavancier, F. (2016). Quantifying repulsiveness of determinantal point processes. Bernoulli 22 2001–2028.
  • [5] Cavoretto, R. and De Rossi, A. (2010). Fast and accurate interpolation of large scattered data sets on the sphere. J. Comput. Appl. Math. 234 1505–1521.
  • [6] Dai, F. and Xu, Y. (2013). Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. New York: Springer.
  • [7] Daley, D.J. and Porcu, E. (2013). Dimension walks through Schoenberg spectral measures. Proc. Amer. Math. Soc. 42 1813–1824.
  • [8] Ginibre, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6 440–449.
  • [9] Gneiting, T. (2002). Compactly supported correlation functions. J. Multivariate Anal. 83 493–508.
  • [10] Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli 19 1327–1349.
  • [11] Golubov, B.I. (1981). On Abel–Poisson type and Riesz means. Anal. Math. 7 161–184.
  • [12] Guinness, J. and Fuentes, M. (2016). Isotropic covariance functions on spheres: Some properties and modeling considerations. J. Multivariate Anal. 143 143–152.
  • [13] Higuchi, A. (1987). Symmetric tensor spherical harmonics on the $N$-sphere and their application to the de Sitter group $\mathrm{SO}(N,1)$. J. Math. Phys. 28 1553–1566.
  • [14] Hitczenko, M. and Stein, M.L. (2012). Some theory for anisotropic processes on the sphere. Stat. Methodol. 9 211–227.
  • [15] Hough, J.B., Krishnapur, M., Peres, Y. and Virág, B. (2006). Determinantal processes and independence. Probab. Surv. 3 206–229.
  • [16] Hough, J.B., Krishnapur, M., Peres, Y. and Virág, B. (2009). Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series 51. Providence, RI: Amer. Math. Soc.
  • [17] Jones, R.H. (1963). Stochastic processes on a sphere. Ann. Math. Statist. 34 213–218.
  • [18] Kim, D.S., Kim, T. and Rim, S.-H. (2012). Some identities involving Gegenbauer polynomials. Adv. Difference Equ. 219.
  • [19] Lavancier, F., Møller, J. and Rubak, E. (2014). Determinantal point process models and statistical inference: Extended version. Technical report. Available at arXiv:1205.4818.
  • [20] Lavancier, F., Møller, J. and Rubak, E. (2015). Determinantal point process models and statistical inference. J. R. Stat. Soc. Ser. B. (Stat. Methodol.) 77 853–877.
  • [21] Marinucci, D. and Peccati, G. (2011). Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series 389. Cambridge: Cambridge Univ. Press.
  • [22] Matheron, G. (1973). The intrinsic random functions and their applications. Adv. in Appl. Probab. 5 439–468.
  • [23] Porcu, E., Bevilacqua, M. and Genton, M.G. (2016). Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J. Amer. Statist. Assoc. 111 888–898.
  • [24] R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • [25] Rainville, E.D. (1971). Special Functions, 1st ed. Bronx, NY: Chelsea.
  • [26] Riesz, F. and Sz.-Nagy, B. (1990). Functional Analysis. Dover Books on Advanced Mathematics. New York: Dover.
  • [27] Schoenberg, I.J. (1942). Positive definite functions on spheres. Duke Math. J. 9 96–108.
  • [28] Shirai, T. and Takahashi, Y. (2003). Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal. 205 414–463.
  • [29] Szegő, G. (1975). Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc.
  • [30] Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York: Springer.
  • [31] Zastavnyi, V.P. (2000). On positive definiteness of some functions. J. Multivariate Anal. 73 55–81.
  • [32] Zastavnyĭ, V.P. (2006). On some properties of the Buhmann functions. UkraïN. Mat. Zh. 58 1045–1067.