Bernoulli

  • Bernoulli
  • Volume 24, Number 2 (2018), 1033-1052.

Functional central limit theorems in $L^{2}(0,1)$ for logarithmic combinatorial assemblies

Koji Tsukuda

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Functional central limit theorems in $L^{2}(0,1)$ for logarithmic combinatorial assemblies are presented. The random elements argued in this paper are viewed as elements taking values in $L^{2}(0,1)$ whereas the Skorokhod space is argued as a framework of weak convergences in functional central limit theorems for random combinatorial structures in the literature. It enables us to treat other standardized random processes which converge weakly to a corresponding Gaussian process with additional assumptions.

Article information

Source
Bernoulli, Volume 24, Number 2 (2018), 1033-1052.

Dates
Received: October 2015
First available in Project Euclid: 21 September 2017

Permanent link to this document
https://projecteuclid.org/euclid.bj/1505980888

Digital Object Identifier
doi:10.3150/16-BEJ847

Mathematical Reviews number (MathSciNet)
MR3706786

Zentralblatt MATH identifier
06778357

Keywords
functional central limit theorem logarithmic assembly Poisson approximation random mappings the Ewens sampling formula

Citation

Tsukuda, Koji. Functional central limit theorems in $L^{2}(0,1)$ for logarithmic combinatorial assemblies. Bernoulli 24 (2018), no. 2, 1033--1052. doi:10.3150/16-BEJ847. https://projecteuclid.org/euclid.bj/1505980888


Export citation

References

  • [1] Arratia, R., Barbour, A.D. and Tavaré, S. (1992). Poisson process approximations for the Ewens sampling formula. Ann. Appl. Probab. 2 519–535.
  • [2] Arratia, R., Barbour, A.D. and Tavaré, S. (2000). Limits of logarithmic combinatorial structures. Ann. Probab. 28 1620–1644.
  • [3] Arratia, R., Stark, D. and Tavaré, S. (1995). Total variation asymptotics for Poisson process approximations of logarithmic combinatorial assemblies. Ann. Probab. 23 1347–1388.
  • [4] Arratia, R. and Tavaré, S. (1992). Limit theorems for combinatorial structures via discrete process approximations. Random Structures Algorithms 3 321–345.
  • [5] Arratia, R. and Tavaré, S. (1994). Independent process approximations for random combinatorial structures. Adv. Math. 104 90–154.
  • [6] DeLaurentis, J.M. and Pittel, B.G. (1985). Random permutations and Brownian motion. Pacific J. Math. 119 287–301.
  • [7] Donnelly, P.J., Ewens, W.J. and Padmadisastra, S. (1991). Functionals of random mappings: Exact and asymptotic results. Adv. in Appl. Probab. 23 437–455.
  • [8] Ewens, W.J. (1972). The sampling theory of selectively neutral alleles. Theoret. Population Biology 3 87–112; erratum, ibid. 3 (1972), 240; erratum, ibid. 3 (1972), 376.
  • [9] Flajolet, P. and Soria, M. (1990). Gaussian limiting distributions for the number of components in combinatorial structures. J. Combin. Theory Ser. A 53 165–182.
  • [10] Hansen, J.C. (1989). A functional central limit theorem for random mappings. Ann. Probab. 17 317–332. Correction: Ann. Probab. 19 (1991) 1393–1396.
  • [11] Hansen, J.C. (1990). A functional central limit theorem for the Ewens sampling formula. J. Appl. Probab. 27 28–43.
  • [12] Prohorov, Yu.V. (1956). Convergence of random processes and limit theorems in probability theory. Teor. Veroyatn. Primen. 1 177–238.
  • [13] Teicher, H. (1955). An inequality on Poisson probabilities. Ann. Math. Stat. 26 147–149.
  • [14] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press.
  • [15] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Series in Statistics. New York: Springer.