## Bernoulli

### Dirichlet curves, convex order and Cauchy distribution

#### Abstract

If $\alpha$ is a probability on $\mathbb{R}^{d}$ and $t>0$, the Dirichlet random probability $P_{t}\sim\mathcal{D}(t\alpha)$ is such that for any measurable partition $(A_{0},\ldots,A_{k})$ of $\mathbb{R}^{d}$ the random variable $(P_{t}(A_{0}),\ldots,P_{t}(A_{k}))$ is Dirichlet distributed with parameters $(t\alpha(A_{0}),\ldots,t\alpha(A_{k}))$. If $\int_{\mathbb{R}^{d}}\log(1+\Vert x\Vert )\alpha(dx)<\infty$ the random variable $\int_{\mathbb{R}^{d}}xP_{t}(dx)$ of $\mathbb{R}^{d}$ does exist: let $\mu(t\alpha)$ be its distribution. The Dirichlet curve associated to the probability $\alpha$ is the map $t\mapsto\mu(t\alpha)$. It has simple properties like $\lim_{t\searrow0}\mu(t\alpha)=\alpha$ and $\lim_{t\rightarrow\infty}\mu(t\alpha)=\delta_{m}$ when $m=\int_{\mathbb{R}^{d}}x\alpha(dx)$ exists. The present paper shows that if $m$ exists and if $\psi$ is a convex function on $\mathbb{R}^{d}$ then $t\mapsto\int_{\mathbb{R}^{d}}\psi(x)\mu(t\alpha)(dx)$ is a decreasing function, which means that $t\mapsto\mu(t\alpha)$ is decreasing according to the Strassen convex order of probabilities. The second aim of the paper is to prove a group of results around the following question: if $\mu(t\alpha)=\mu(s\alpha)$ for some $0\leq s<t$, can we claim that $\mu$ is Cauchy distributed in $\mathbb{R}^{d}?$

#### Article information

Source
Bernoulli, Volume 24, Number 1 (2018), 1-29.

Dates
Revised: May 2015
First available in Project Euclid: 27 July 2017

https://projecteuclid.org/euclid.bj/1501142434

Digital Object Identifier
doi:10.3150/15-BEJ765

Mathematical Reviews number (MathSciNet)
MR3706748

Zentralblatt MATH identifier
06778319

#### Citation

Letac, Gérard; Piccioni, Mauro. Dirichlet curves, convex order and Cauchy distribution. Bernoulli 24 (2018), no. 1, 1--29. doi:10.3150/15-BEJ765. https://projecteuclid.org/euclid.bj/1501142434

#### References

• [1] Chamayou, J.-F. (2000). Private communication.
• [2] Chamayou, J.-F. and Letac, G. (1994). A transient random walk on stochastic matrices with Dirichlet distributions. Ann. Probab. 22 424–430.
• [3] Cifarelli, D.M. and Melilli, E. (2000). Some new results for Dirichlet priors. Ann. Statist. 28 1390–1413.
• [4] Cifarelli, D.M. and Regazzini, E. (1990). Distribution functions of means of a Dirichlet process. Ann. Statist. 18 429–442.
• [5] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41 45–76.
• [6] Diaconis, P. and Kemperman, J. (1996). Some new tools for Dirichlet priors. In Bayesian Statistics, 5 (Alicante, 1994) (J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith eds.) Oxford Sci. Publ. 97–106. New York: Oxford Univ. Press.
• [7] Feigin, P.D. and Tweedie, R.L. (1989). Linear functionals and Markov chains associated with Dirichlet processes. Math. Proc. Cambridge Philos. Soc. 105 579–585.
• [8] Feller, W. (1966). An Introduction to Probability Theory and Its Applications. Vol. II. New York: Wiley.
• [9] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230.
• [10] Hirsch, F. and Roynette, B. (2013). On $\mathbb{R}^{d}$-valued peacocks. ESAIM Probab. Stat. 17 444–454.
• [11] Hirsch, F., Roynette, B. and Yor, M. (2012). Kellerer’s theorem revisited. Prépublications du Laboratoire d’Analyse et Probabilités, Université D’Evry 361, 20 pages.
• [12] Hjort, N.L. and Ongaro, A. (2005). Exact inference for random Dirichlet means. Stat. Inference Stoch. Process. 8 227–254.
• [13] James, L.F. (2010). Dirichlet mean identities and laws of a class of subordinators. Bernoulli 16 361–388.
• [14] Kellerer, H.G. (1972). Markov–Komposition und eine Anwendung auf Martingale. Math. Ann. 198 99–122.
• [15] Letac, G. (1977). Which functions preserve Cauchy laws? Proc. Amer. Math. Soc. 67 277–286.
• [16] Letac, G. and Piccioni, M. (2014). Dirichlet random walks. J. Appl. Probab. 51 1081–1099.
• [17] Lijoi, A. and Prünster, I. (2009). Distributional properties of means of random probability measures. Stat. Surv. 3 47–95.
• [18] Lijoi, A. and Regazzini, E. (2004). Means of a Dirichlet process and multiple hypergeometric functions. Ann. Probab. 32 1469–1495.
• [19] Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. Wiley Series in Probability and Statistics. Chichester: Wiley.
• [20] Rainville, E.D. (1960). Special Functions. New York: The Macmillan Co..
• [21] Ramachandran, B. and Rao, C.R. (1970). Solutions of functional equations arising in some regression problems and a characterization of the Cauchy law. Sankhyā Ser. A 32 1–30.
• [22] Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Stochastic Modeling. New York: Chapman & Hall.
• [23] Sato, K.-i. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge: Cambridge Univ. Press.
• [24] Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639–650.
• [25] Shaked, M. and Shanthikumar, J.G. (1994). Stochastic Orders and Their Applications. Probability and Mathematical Statistics. San Diego: Academic Press, Inc.
• [26] Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36 423–439.
• [27] Vershik, A.M., Ĭor, M. and Tsilevich, N.V. (2004). The Markov-Kreĭn identity and the quasi-invariance of the gamma process. J. Math. Sci. (N. Y.) 121 2303–2310.
• [28] Wilks, S.S. (1962). Statistics. New York: Wiley.
• [29] Yamato, H. (1984). Characteristic functions of means of distributions chosen from a Dirichlet process. Ann. Probab. 12 262–267.
• [30] Zolotarev, V.M. (1986). One-Dimensional Stable Distributions. Translations of Mathematical Monographs 65. Providence, RI: Amer. Math. Soc.