• Bernoulli
  • Volume 23, Number 4B (2017), 3598-3637.

Adaptive estimation for bifurcating Markov chains

S. Valère Bitseki Penda, Marc Hoffmann, and Adélaïde Olivier

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In a first part, we prove Bernstein-type deviation inequalities for bifurcating Markov chains (BMC) under a geometric ergodicity assumption, completing former results of Guyon and Bitseki Penda, Djellout and Guillin. These preliminary results are the key ingredient to implement nonparametric wavelet thresholding estimation procedures: in a second part, we construct nonparametric estimators of the transition density of a BMC, of its mean transition density and of the corresponding invariant density, and show smoothness adaptation over various multivariate Besov classes under $L^{p}$-loss error, for $1\leq p<\infty$. We prove that our estimators are (nearly) optimal in a minimax sense. As an application, we obtain new results for the estimation of the splitting size-dependent rate of growth-fragmentation models and we extend the statistical study of bifurcating autoregressive processes.

Article information

Bernoulli, Volume 23, Number 4B (2017), 3598-3637.

Received: October 2015
Revised: April 2016
First available in Project Euclid: 23 May 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

bifurcating autoregressive process bifurcating Markov chains binary trees deviations inequalities growth-fragmentation processes minimax rates of convergence nonparametric adaptive estimation


Bitseki Penda, S. Valère; Hoffmann, Marc; Olivier, Adélaïde. Adaptive estimation for bifurcating Markov chains. Bernoulli 23 (2017), no. 4B, 3598--3637. doi:10.3150/16-BEJ859.

Export citation


  • [1] Alquier, P. and Wintenberger, O. (2012). Model selection for weakly dependent time series forecasting. Bernoulli 18 883–913.
  • [2] Athreya, K.B. and Kang, H.-J. (1998). Some limit theorems for positive recurrent branching Markov chains. I. Adv. in Appl. Probab. 30 693–710.
  • [3] Basawa, I.V. and Zhou, J. (2004). Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab. 41A 55–64.
  • [4] Benjamini, I. and Peres, Y. (1994). Markov chains indexed by trees. Ann. Probab. 22 219–243.
  • [5] Bercu, B. and Blandin, V. (2015). A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes. Stochastic Process. Appl. 125 1218–1243.
  • [6] Bercu, B., de Saporta, B. and Gégout-Petit, A. (2009). Asymptotic analysis for bifurcating autoregressive processes via a martingale approach. Electron. J. Probab. 14 2492–2526.
  • [7] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge: Cambridge Univ. Press.
  • [8] Bitseki Penda, S.V. and Djellout, H. (2014). Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models. Ann. Inst. Henri Poincaré Probab. Stat. 50 806–844.
  • [9] Bitseki Penda, S.V., Djellout, H. and Guillin, A. (2014). Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application. Ann. Appl. Probab. 24 235–291.
  • [10] Bitseki Penda, S.V., Escobar-Bach, M. and Guillin, A. Transportation cost-information and concentration inequalities for bifurcating Markov chains. Available at arXiv:1501.06693.
  • [11] Bitseki Penda, S.V. and Olivier, A. Nonparametric estimation of the autoregressive functions in bifurcating autoregressive models. Available at arXiv:1506.01842.
  • [12] Blandin, V. (2014). Asymptotic results for random coefficient bifurcating autoregressive processes. Statistics 48 1202–1232.
  • [13] Clémençon, S.J.M. (2000). Adaptive estimation of the transition density of a regular Markov chain. Math. Methods Statist. 9 323–357.
  • [14] Cohen, A. (2000). Handbook of Numerical Analysis. Vol. VII (P.G. Ciarlet and J.L. Lions, eds.). Handbook of Numerical Analysis, VII. Amsterdam: North-Holland.
  • [15] Cowan, R. and Staudte, R.G. (1986). The bifurcating autoregressive model in cell lineage studies. Biometrics 42 769–783.
  • [16] de Saporta, B., Gégout-Petit, A. and Marsalle, L. (2011). Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat. 5 1313–1353.
  • [17] de Saporta, B., Gégout-Petit, A. and Marsalle, L. (2012). Asymmetry tests for bifurcating auto-regressive processes with missing data. Statist. Probab. Lett. 82 1439–1444.
  • [18] de Saporta, B., Gégout-Petit, A. and Marsalle, L. (2014). Random coefficients bifurcating autoregressive processes. ESAIM Probab. Stat. 18 365–399.
  • [19] Delmas, J.-F. and Marsalle, L. (2010). Detection of cellular aging in a Galton–Watson process. Stochastic Process. Appl. 120 2495–2519.
  • [20] DeVore, R.A., Konyagin, S.V. and Temlyakov, V.N. (1998). Hyperbolic wavelet approximation. Constr. Approx. 14 1–26.
  • [21] Donoho, D.L. and Johnstone, I.M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425–455.
  • [22] Donoho, D.L. and Johnstone, I.M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200–1224.
  • [23] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: Asymptopia? J. Roy. Statist. Soc. Ser. B 57 301–369.
  • [24] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by wavelet thresholding. Ann. Statist. 24 508–539.
  • [25] Doumic, M., Hoffmann, M., Krell, N. and Robert, L. (2015). Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli 21 1760–1799.
  • [26] Francq, C. and Zakoïan, J.-M. (2010). GARCH Models: Structure, Statistical Inference and Financial Applications. Chichester: Wiley.
  • [27] Gao, F., Guillin, A. and Wu, L. (2014). Bernstein-type concentration inequalities for symmetric Markov processes. Theory Probab. Appl. 58 358–382.
  • [28] Guyon, J. (2007). Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 1538–1569.
  • [29] Hairer, M. and Mattingly, J.C. (2011). Yet another look at Harris’ ergodic theorem for Markov chains. In Seminar on Stochastic Analysis, Random Fields and Applications VI. Progress in Probability 63 109–117. Basel: Birkhäuser.
  • [30] Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998). Wavelets, Approximation, and Statistical Applications. Lecture Notes in Statistics 129. New York: Springer.
  • [31] Hoffmann, M. (1999). Adaptive estimation in diffusion processes. Stochastic Process. Appl. 79 135–163.
  • [32] Huggins, R.M. and Basawa, I.V. (1999). Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab. 36 1225–1233.
  • [33] Huggins, R.M. and Basawa, I.V. (2000). Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat. 42 423–432.
  • [34] Kerkyacharian, G. and Picard, D. (2000). Thresholding algorithms, maxisets and well-concentrated bases. Test 9 283–344.
  • [35] Lacour, C. (2007). Adaptive estimation of the transition density of a Markov chain. Ann. Inst. Henri Poincaré Probab. Stat. 43 571–597.
  • [36] Lacour, C. (2008). Nonparametric estimation of the stationary density and the transition density of a Markov chain. Stochastic Process. Appl. 118 232–260.
  • [37] Merlevède, F., Peligrad, M. and Rio, E. (2009). Bernstein inequality and moderate deviations under strong mixing conditions. In High Dimensional Probability V: The Luminy Volume. Inst. Math. Stat. Collect. 5 273–292. Beachwood, OH: IMS.
  • [38] Meyer, Y. (1990). Ondelettes et Opérateurs. I. Actualités Mathématiques. [Current Mathematical Topics]. Paris: Hermann.
  • [39] Meyn, S.P. and Tweedie, R.L. (1993). Markov Chains and Stochastic Stability. Communications and Control Engineering Series. London: Springer.
  • [40] Paulin, D. (2015). Concentration inequalities for Markov chains by Marton couplings and spectral methods. Electron. J. Probab. 20 no. 79, 32.
  • [41] Perthame, B. (2007). Transport Equations in Biology. Frontiers in Mathematics. Basel: Birkhäuser.
  • [42] Robert, L., Hoffmann, M., Krell, N., Aymerich, S., Robert, J. and Doumic, M. Division control in Escherichia coli is based on a size-sensing rather than a timing mechanism. BMC Biol. 02/2014 12(1) 17.
  • [43] Roussas, G.G. (1991). Estimation of transition distribution function and its quantiles in Markov processes: Strong consistency and asymptotic normality. In Nonparametric Functional Estimation and Related Topics (Spetses, 1990). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 335 443–462. Dordrecht: Kluwer Academic.
  • [44] Takacs, C. (2002). Strong law of large numbers for branching Markov chains. Markov Process. Related Fields 8 107–116.
  • [45] Wintenberger, O. (2015). Weak transport inequalities and applications to exponential and oracle inequalities. Electron. J. Probab. 20 no. 114, 27.
  • [46] Zhou, J. and Basawa, I.V. (2005). Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Ser. Anal. 26 825–842.