Bernoulli

  • Bernoulli
  • Volume 23, Number 4A (2017), 2808-2827.

Sharp thresholds for Gibbs–non-Gibbs transitions in the fuzzy Potts model with a Kac-type interaction

Benedikt Jahnel and Christof Külske

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We investigate the Gibbs properties of the fuzzy Potts model on the $d$-dimensional torus with Kac interaction. We use a variational approach for profiles inspired by that of Fernández, den Hollander and Martínez [J. Stat. Phys. 156 (2014) 203–220] for their study of the Gibbs–non-Gibbs transitions of a dynamical Kac–Ising model on the torus. As our main result, we show that the mean-field thresholds dividing Gibbsian from non-Gibbsian behavior are sharp in the fuzzy Kac–Potts model with class size unequal two. On the way to this result, we prove a large deviation principle for color profiles with diluted total mass densities and use monotocity arguments.

Article information

Source
Bernoulli, Volume 23, Number 4A (2017), 2808-2827.

Dates
Received: February 2015
Revised: November 2015
First available in Project Euclid: 9 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.bj/1494316833

Digital Object Identifier
doi:10.3150/16-BEJ828

Mathematical Reviews number (MathSciNet)
MR3648046

Zentralblatt MATH identifier
06778257

Keywords
diluted large deviation principles fuzzy Kac–Potts model Gibbs versus non-Gibbs Kac model large deviation principles Potts model

Citation

Jahnel, Benedikt; Külske, Christof. Sharp thresholds for Gibbs–non-Gibbs transitions in the fuzzy Potts model with a Kac-type interaction. Bernoulli 23 (2017), no. 4A, 2808--2827. doi:10.3150/16-BEJ828. https://projecteuclid.org/euclid.bj/1494316833


Export citation

References

  • [1] Bálint, A. (2010). Gibbsianness and non-Gibbsianness in divide and color models. Ann. Probab. 38 1609–1638.
  • [2] Bauer, H. (1978). Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie, revised ed. Berlin/New York: Walter de Gruyter.
  • [3] Benois, O., Mourragui, M., Orlandi, E., Saada, E. and Triolo, L. (2012). Quenched large deviations for Glauber evolution with Kac interaction and random field. Markov Process. Related Fields 18 215–268.
  • [4] Bovier, A. and Külske, C. (2005). Coarse-graining techniques for (random) Kac models. In Interacting Stochastic Systems 11–28. Berlin: Springer.
  • [5] Comets, F. (1987). Nucleation for a long range magnetic model. Ann. Inst. Henri Poincaré Probab. Stat. 23 135–178.
  • [6] Comets, F. (1989). Large deviation estimates for a conditional probability distribution. Applications to random interaction Gibbs measures. Probab. Theory Related Fields 80 407–432.
  • [7] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Berlin: Springer. Corrected reprint of the second (1998) edition.
  • [8] den Hollander, F., Redig, F. and van Zuijlen, W. (2015). Gibbs–non-Gibbs dynamical transitions for mean-field interacting Brownian motions. Stochastic Process. Appl. 125 371–400.
  • [9] De Masi, A., Orlandi, E., Presutti, E. and Triolo, L. (1994). Stability of the interface in a model of phase separation. Proc. Roy. Soc. Edinburgh Sect. A 124 1013–1022.
  • [10] De Roeck, W., Maes, C., Netočný, K. and Schütz, M. (2015). Locality and nonlocality of classical restrictions of quantum spin systems with applications to quantum large deviations and entanglement. J. Math. Phys. 56 023301, 30.
  • [11] Eisele, T. and Ellis, R.S. (1983). Symmetry breaking and random waves for magnetic systems on a circle. Z. Wahrsch. Verw. Gebiete 63 297–348.
  • [12] Ellis, R.S. and Wang, K. (1990). Limit theorems for the empirical vector of the Curie–Weiss–Potts model. Stochastic Process. Appl. 35 59–79.
  • [13] Fernández, R. (2006). Gibbsianness and non-Gibbsianness in lattice random fields. In Mathematical Statistical Physics 731–799. Amsterdam: Elsevier B. V.
  • [14] Fernández, R., den Hollander, F. and Martínez, J. (2014). Variational description of Gibbs–non-Gibbs dynamical transitions for spin-flip systems with a Kac-type interaction. J. Stat. Phys. 156 203–220.
  • [15] Häggström, O. (2003). Is the fuzzy Potts model Gibbsian? Ann. Inst. Henri Poincaré Probab. Stat. 39 891–917.
  • [16] Häggström, O. and Külske, C. (2004). Gibbs properties of the fuzzy Potts model on trees and in mean field. Markov Process. Related Fields 10 477–506.
  • [17] Jahnel, B., Külske, C., Rudelli, E. and Wegener, J. (2014). Gibbsian and non-Gibbsian properties of the generalized mean-field fuzzy Potts-model. Markov Process. Related Fields 20 601–632.
  • [18] Klenke, A. (2008). Wahrscheinlichkeitstheorie. Berlin/Heidelberg: Springer.
  • [19] Külske, C. (2003). Analogues of non-Gibbsianness in joint measures of disordered mean field models. J. Stat. Phys. 112 1079–1108.
  • [20] Külske, C. and Le Ny, A. (2007). Spin-flip dynamics of the Curie–Weiss model: Loss of Gibbsianness with possibly broken symmetry. Comm. Math. Phys. 271 431–454.
  • [21] Külske, C. and Rozikov, U.A. (2016). Fuzzy transformations of Gibbs measures for the Potts model on a Cayley tree. Random Structures Algorithms. To appear.
  • [22] Le Ny, A. (2008). Gibbsian description of mean-field models. In In and Out of Equilibrium. 2 (V.Sidoravicius and M.E. Vares, eds.). Progress in Probability 60 463–480. Basel: Birkhäuser.
  • [23] Potts, R.B. (1952). Some generalized order–disorder transformations. Proc. Cambridge Philos. Soc. 48 106–109.
  • [24] van Enter, A.C.D. (2012). On the prevalence of non-Gibbsian states in mathematical physics. IAMP News Bulletin 15 15–24.
  • [25] van Enter, A.C.D., Ermolaev, V.N., Iacobelli, G. and Külske, C. (2012). Gibbs–non-Gibbs properties for evolving Ising models on trees. Ann. Inst. Henri Poincaré Probab. Stat. 48 774–791.
  • [26] van Enter, A.C.D., Fernández, R., den Hollander, F. and Redig, F. (2002). Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures. Comm. Math. Phys. 226 101–130.
  • [27] van Enter, A.C.D., Fernández, R., den Hollander, F. and Redig, F. (2010). A large-deviation view on dynamical Gibbs–non-Gibbs transitions. Mosc. Math. J. 10 687–711, 838.
  • [28] van Enter, A.C.D., Fernández, R. and Sokal, A.D. (1993). Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Stat. Phys. 72 879–1167.