Bernoulli

  • Bernoulli
  • Volume 22, Number 4 (2016), 2113-2142.

The circular SiZer, inferred persistence of shape parameters and application to early stem cell differentiation

Stephan Huckemann, Kwang-Rae Kim, Axel Munk, Florian Rehfeldt, Max Sommerfeld, Joachim Weickert, and Carina Wollnik

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We generalize the SiZer of Chaudhuri and Marron (J. Amer. Statist. Assoc. 94 (1999) 807–823; Ann. Statist. 28 (2000) 408–428) for the detection of shape parameters of densities on the real line to the case of circular data. It turns out that only the wrapped Gaussian kernel gives a symmetric, strongly Lipschitz semi-group satisfying “circular” causality, that is, not introducing possibly artificial modes with increasing levels of smoothing. Some notable differences between Euclidean and circular scale space theory are highlighted. Based on this, we provide an asymptotic theory to make inference about the persistence of shape features. The resulting circular mode persistence diagram is applied to the analysis of early mechanically-induced differentiation in adult human stem cells from their actin-myosin filament structure. As a consequence, the circular SiZer based on the wrapped Gaussian kernel (WiZer) allows the verification at a controlled error level of the observation reported by Zemel et al. (Nat. Phys. 6 (2010) 468–473): Within early stem cell differentiation, polarizations of stem cells exhibit preferred directions in three different micro-environments.

Article information

Source
Bernoulli Volume 22, Number 4 (2016), 2113-2142.

Dates
Received: April 2014
Revised: November 2014
First available in Project Euclid: 3 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.bj/1462297677

Digital Object Identifier
doi:10.3150/15-BEJ722

Mathematical Reviews number (MathSciNet)
MR3498025

Zentralblatt MATH identifier
1349.62195

Keywords
circular data circular scale spaces mode hunting multiscale process persistence inference stem cell differentiation variation diminishing wrapped Gaussian kernel estimator

Citation

Huckemann, Stephan; Kim, Kwang-Rae; Munk, Axel; Rehfeldt, Florian; Sommerfeld, Max; Weickert, Joachim; Wollnik, Carina. The circular SiZer, inferred persistence of shape parameters and application to early stem cell differentiation. Bernoulli 22 (2016), no. 4, 2113--2142. doi:10.3150/15-BEJ722. https://projecteuclid.org/euclid.bj/1462297677.


Export citation

References

  • [1] Ahmed, M.O. and Walther, G. (2012). Investigating the multimodality of multivariate data with principal curves. Comput. Statist. Data Anal. 56 4462–4469.
  • [2] Alvarez, L., Guichard, F., Lions, P.-L. and Morel, J.-M. (1993). Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123 199–257.
  • [3] Babaud, J., Witkin, A.P., Baudin, M. and Duda, R.O. (1986). Uniqueness of the Gaussian kernel for scale space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 8 26–33.
  • [4] Balakrishnan, S., Fasy, B., Lecci, F., Rinaldo, A., Singh, A. and Wasserman, L. (2013). Statistical inference for persistent homology. Preprint. Available at arXiv:1303.7117.
  • [5] Briggs, A.J., Detweiler, C., Mullen, P.C. and Scharstein, D. (2004). May. scale-space features in 1D omnidirectional images. In Proc. Fifth Workshop on Omnidirectional Vision, Camera Networks and Nonclassical Cameras (P. Sturm, T. Svoboda and S. Teller, eds.) 115–126. Prague, Czech Republic.
  • [6] Brown, L.D., Johnstone, I.M. and MacGibbon, K.B. (1981). Variation diminishing transformations: A direct approach to total positivity and its statistical applications. J. Amer. Statist. Assoc. 76 824–832.
  • [7] Bubenik, P. and Kim, P.T. (2007). A statistical approach to persistent homology. Homology, Homotopy Appl. 9 337–362.
  • [8] Carlsson, G. (2009). Topology and data. Bull. Amer. Math. Soc. (N.S.) 46 255–308.
  • [9] Chaudhuri, P. and Marron, J.S. (1999). SiZer for exploration of structures in curves. J. Amer. Statist. Assoc. 94 807–823.
  • [10] Chaudhuri, P. and Marron, J.S. (2000). Scale space view of curve estimation. Ann. Statist. 28 408–428.
  • [11] Cheng, M.-Y. and Hall, P. (1999). Mode testing in difficult cases. Ann. Statist. 27 1294–1315.
  • [12] Chung, M.K., Bubenik, P. and Kim, P.T. (2009). Persistence diagrams of cortical surface data. In Information Processing in Medical Imaging 386–397. Berlin-Heidelberg: Springer.
  • [13] Cohen-Steiner, D., Edelsbrunner, H. and Harer, J. (2007). Stability of persistence diagrams. Discrete Comput. Geom. 37 103–120.
  • [14] Davies, P.L. and Kovac, A. (2004). Densities, spectral densities and modality. Ann. Statist. 32 1093–1136.
  • [15] Dümbgen, L. and Spokoiny, V.G. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist. 29 124–152.
  • [16] Dümbgen, L. and Walther, G. (2008). Multiscale inference about a density. Ann. Statist. 36 1758–1785.
  • [17] Edelsbrunner, H., Letscher, D. and Zomorodian, A. (2002). Topological persistence and simplification. Discrete Comput. Geom. 28 511–533.
  • [18] Eltzner, B., Gottschlich, C., Wollnik, C., Huckemann, S. and Rehfeldt, F. (2015). The filament sensor for near real-time detection of cytoskeletal fiber structures. PLoS ONE 10 e0126346.
  • [19] Engel, K.-J. and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics 194. New York: Springer.
  • [20] Engler, A.J., Sen, S., Sweeney, H.L. and Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126 677–689.
  • [21] Ethier, S.N. and Kurtz, T.G. (1986). Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: Wiley.
  • [22] Fisher, N.I. and Marron, J.S. (2001). Mode testing via the excess mass estimate. Biometrika 88 499–517.
  • [23] Ghrist, R. (2008). Barcodes: The persistent topology of data. Bull. Amer. Math. Soc. (N.S.) 45 61–75.
  • [24] Good, I.J. and Gaskins, R.A. (1980). Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data. J. Amer. Statist. Assoc. 75 42–73.
  • [25] Hall, P., Minnotte, M.C. and Zhang, C. (2004). Bump hunting with non-Gaussian kernels. Ann. Statist. 32 2124–2141.
  • [26] Hartigan, J.A. and Hartigan, P.M. (1985). The dip test of unimodality. Ann. Statist. 13 70–84.
  • [27] Heo, G., Gamble, J. and Kim, P.T. (2012). Topological analysis of variance and the maxillary complex. J. Amer. Statist. Assoc. 107 477–492.
  • [28] Karlin, S. (1968). Total Positivity. Vol. I. Stanford, CA: Stanford Univ. Press.
  • [29] Klemelä, J. (2006). Visualization of multivariate density estimates with shape trees. J. Comput. Graph. Statist. 15 372–397.
  • [30] Lindeberg, T. (1994). Scale-Space Theory in Computer Vision. Boston: Kluwer.
  • [31] Lindeberg, T. (2011). Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vision 40 36–81.
  • [32] Mairhuber, J.C., Schoenberg, I.J. and Williamson, R.E. (1959). On variation diminishing transformations of the circle. Rend. Circ. Mat. Palermo (2) 8 241–270.
  • [33] Mardia, K.V. and Jupp, P.E. (2000). Directional Statistics, 2nd ed. Wiley Series in Probability and Statistics. Chichester: Wiley.
  • [34] Minnotte, M.C. (1997). Nonparametric testing of the existence of modes. Ann. Statist. 25 1646–1660.
  • [35] Minnotte, M.C. and Scott, D.W. (1993). The mode tree: A tool for visualization of nonparametric density features. J. Comput. Graph. Statist. 2 51–68.
  • [36] Müller, D.W. and Sawitzki, G. (1991). Excess mass estimates and tests for multimodality. J. Amer. Statist. Assoc. 86 738–746.
  • [37] Munk, A. (1999). Optimal inference for circular variation diminishing experiments with applications to the von-Mises distribution and the Fisher–Efron parabola model. Metrika 50 1–17.
  • [38] Oliveira, M., Crujeiras, R.M. and Rodríguez-Casal, A. (2013). CircSiZer: An exploratory tool for circular data. Environmental and Ecological Statistics 21 143–159.
  • [39] Ooi, H. (2002). Density visualization and mode hunting using trees. J. Comput. Graph. Statist. 11 328–347.
  • [40] Panaretos, V.M., Pham, T. and Yao, Z. (2014). Principal flows. J. Amer. Statist. Assoc. 109 424–436.
  • [41] Peetre, J. (1959). Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 7 211–218.
  • [42] Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters – An excess mass approach. Ann. Statist. 23 855–881.
  • [43] Rehfeldt, F., Engler, A.J., Eckhardt, A., Ahmed, F. and Discher, D.E. (2007). Cell responses to the mechanochemical microenvironment – implications for regenerative medicine and drug delivery. Advanced Drug Delivery Reviews 59 1329–1339.
  • [44] Sakai, T. (1996). Riemannian Geometry. Translations of Mathematical Monographs 149. Providence, RI: Amer. Math. Soc.
  • [45] Schmidt-Hieber, J., Munk, A. and Dümbgen, L. (2013). Multiscale methods for shape constraints in deconvolution: Confidence statements for qualitative features. Ann. Statist. 41 1299–1328.
  • [46] Schwartzman, A., Gavrilov, Y. and Adler, R.J. (2011). Multiple testing of local maxima for detection of peaks in 1D. Ann. Statist. 39 3290–3319.
  • [47] Schwartzman, A., Jaffe, A., Gavrilov, Y. and Meyer, C.A. (2013). Multiple testing of local maxima for detection of peaks in ChIP-Seq data. Ann. Appl. Stat. 7 471–494.
  • [48] Silverman, B.W. (1981). Using kernel density estimates to investigate multimodality. J. R. Stat. Soc. Ser. B. Stat. Methodol. 43 97–99.
  • [49] Taylor, C.C. (2008). Automatic bandwidth selection for circular density estimation. Comput. Statist. Data Anal. 52 3493–3500.
  • [50] Wada, T., Gu, Y.H. and Sato, M. (1991). Scale-space filtering for periodic waveforms. Systems and Computers in Japan 22 45–54.
  • [51] Weickert, J. (1998). Anisotropic Diffusion in Image Processing. European Consortium for Mathematics in Industry. Stuttgart: B. G. Teubner.
  • [52] Weickert, J., Ishikawa, S. and Imiya, A. (1999). Linear scale-space has first been proposed in Japan. J. Math. Imaging Vision 10 237–252.
  • [53] Zemel, A., Rehfeldt, F., Brown, A.E.X., Discher, D.E. and Safran, S.A. (2010). Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat. Phys. 6 468–473.