Bernoulli

  • Bernoulli
  • Volume 22, Number 2 (2016), 681-710.

Long time behavior of stochastic hard ball systems

Patrick Cattiaux, Myriam Fradon, Alexei M. Kulik, and Sylvie Roelly

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the long time behavior of a system of $n=2,3$ Brownian hard balls, living in $\mathbb{R}^{d}$ for $d\ge2$, submitted to a mutual attraction and to elastic collisions.

Article information

Source
Bernoulli, Volume 22, Number 2 (2016), 681-710.

Dates
Received: February 2014
Revised: July 2014
First available in Project Euclid: 9 November 2015

Permanent link to this document
https://projecteuclid.org/euclid.bj/1447077758

Digital Object Identifier
doi:10.3150/14-BEJ672

Mathematical Reviews number (MathSciNet)
MR3449797

Zentralblatt MATH identifier
1336.60108

Keywords
hard core interaction local time Lyapunov function normal reflection Poincaré inequality reversible measure stochastic differential equations

Citation

Cattiaux, Patrick; Fradon, Myriam; Kulik, Alexei M.; Roelly, Sylvie. Long time behavior of stochastic hard ball systems. Bernoulli 22 (2016), no. 2, 681--710. doi:10.3150/14-BEJ672. https://projecteuclid.org/euclid.bj/1447077758


Export citation

References

  • [1] Bakry, D., Cattiaux, P. and Guillin, A. (2008). Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 727–759.
  • [2] Bass, R.F. and Hsu, P. (1990). The semimartingale structure of reflecting Brownian motion. Proc. Amer. Math. Soc. 108 1007–1010.
  • [3] Bass, R.F. and Hsu, P. (1991). Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains. Ann. Probab. 19 486–508.
  • [4] Bobkov, S.G. (2003). Spectral gap and concentration for some spherically symmetric probability measures. In Geometric Aspects of Functional Analysis. Lecture Notes in Math. 1807 37–43. Berlin: Springer.
  • [5] Boissard, E., Cattiaux, P., Guillin, A. and Miclo, L. (2013). Ornstein–Uhlenbeck pinball: I. Poincaré Inequalities in a punctured domain. Preprint. Available at http://perso.math.univ-toulouse.fr/cattiaux/.
  • [6] Böröczky, K. Jr. (2004). Finite Packing and Covering. Cambridge Tracts in Mathematics 154. Cambridge: Cambridge Univ. Press.
  • [7] Borodin, A.N. and Salminen, P. (2002). Handbook of Brownian Motion – Facts and Formulae, 2nd ed. Probability and Its Applications. Basel: Birkhäuser.
  • [8] Cattiaux, P. (1986). Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition frontière. Ann. Inst. Henri Poincaré Probab. Stat. 22 67–112.
  • [9] Cattiaux, P. (1987). Régularité au bord pour les densités et les densités conditionnelles d’une diffusion réfléchie hypoelliptique. Stochastics 20 309–340.
  • [10] Cattiaux, P. (1992). Stochastic calculus and degenerate boundary value problems. Ann. Inst. Fourier (Grenoble) 42 541–624.
  • [11] Cattiaux, P., Guillin, A. and Zitt, P.A. (2013). Poincaré inequalities and hitting times. Ann. Inst. Henri Poincaré Probab. Stat. 49 95–118.
  • [12] Chen, Z.-Q., Fitzsimmons, P.J., Takeda, M., Ying, J. and Zhang, T.-S. (2004). Absolute continuity of symmetric Markov processes. Ann. Probab. 32 2067–2098.
  • [13] Chen, Z.Q., Fitzsimmons, P.J. and Williams, R.J. (1993). Reflecting Brownian motions: Quasimartingales and strong Caccioppoli sets. Potential Anal. 2 219–243.
  • [14] Chow, T.Y. (1995). Penny-packings with minimal second moments. Combinatorica 15 151–158.
  • [15] Conway, J.H. and Sloane, N.J.A. (1993). Sphere Packings, Lattices and Groups, 2nd ed. Grundlehren der Mathematischen Wissenschaften 290. New York: Springer.
  • [16] Diaconis, P., Lebeau, G. and Michel, L. (2011). Geometric analysis for the Metropolis algorithm on Lipschitz domains. Invent. Math. 185 239–281.
  • [17] Fradon, M. (2010). Brownian dynamics of globules. Electron. J. Probab. 15 142–161.
  • [18] Fradon, M. and Rœlly, S. (2000). Infinite-dimensional diffusion processes with singular interaction. Bull. Sci. Math. 124 287–318.
  • [19] Fradon, M. and Rœlly, S. (2006). Infinite system of Brownian balls: Equilibrium measures are canonical Gibbs. Stoch. Dyn. 6 97–122.
  • [20] Fradon, M. and Rœlly, S. (2007). Infinite system of Brownian balls with interaction: The non-reversible case. ESAIM Probab. Stat. 11 55–79.
  • [21] Fradon, M. and Rœlly, S. (2010). Infinitely many Brownian globules with Brownian radii. Stoch. Dyn. 10 591–612.
  • [22] Fradon, M., Roelly, S. and Tanemura, H. (2000). An infinite system of Brownian balls with infinite range interaction. Stochastic Process. Appl. 90 43–66.
  • [23] Fukushima, M., Ōshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. De Gruyter Studies in Mathematics 19. Berlin: de Gruyter.
  • [24] Fukushima, M. and Tomisaki, M. (1996). Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps. Probab. Theory Related Fields 106 521–557.
  • [25] Kinkladze, G.N. (1982). A note on the structure of processes the measure of which is absolutely continuous with respect to the Wiener process modulus measure. Stochastics 8 39–44.
  • [26] Kulik, A.M. (2009). Exponential ergodicity of the solutions to SDEs with a jump noise. Stochastic Process. Appl. 119 602–632.
  • [27] Kulik, A.M. (2011). Asymptotic and spectral properties of exponentially ${\varphi}$-ergodic Markov processes. Stochastic Process. Appl. 121 1044–1075.
  • [28] Kulik, A.M. (2011). Poincaré inequality and exponential integrability of the hitting times of a Markov process. Theory Stoch. Process. 17 71–80.
  • [29] Linetsky, V. (2005). On the transition densities for reflected diffusions. Adv. in Appl. Probab. 37 435–460.
  • [30] Meyn, S.P. and Tweedie, R.L. (1993). Markov Chains and Stochastic Stability. Communications and Control Engineering Series. London: Springer.
  • [31] Osada, H. (1996). Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions. Comm. Math. Phys. 176 117–131.
  • [32] Saisho, Y. and Tanaka, H. (1986). Stochastic differential equations for mutually reflecting Brownian balls. Osaka J. Math. 23 725–740.
  • [33] Saisho, Y. and Tanaka, H. (1987). On the symmetry of a reflecting Brownian motion defined by Skorohod’s equation for a multidimensional domain. Tokyo J. Math. 10 419–435.
  • [34] Sloane, N.J.A., Hardin, R.H., Duff, T.D.S. and Conway, J.H. (1995). Minimal-energy clusters of hard spheres. Discrete Comput. Geom. 14 237–259.
  • [35] Tanemura, H. (1996). A system of infinitely many mutually reflecting Brownian balls in ${\mathbf{R}}^{d}$. Probab. Theory Related Fields 104 399–426.
  • [36] Tanemura, H. (1997). Uniqueness of Dirichlet forms associated with systems of infinitely many Brownian balls in $\mathbf{R}^{d}$. Probab. Theory Related Fields 109 275–299.
  • [37] Temesvári, Á. (1974). On the extremum of power sums of distances. Mat. Lapok (N.S.) 25 329–342.
  • [38] Veretennikov, A.Y. (1987). Estimates of the mixing rate for stochastic equations. Teor. Veroyatn. Primen. 32 299–308.
  • [39] Ward, A.R. and Glynn, P.W. (2003). Properties of the reflected Ornstein–Uhlenbeck process. Queueing Syst. 44 109–123.