• Bernoulli
  • Volume 22, Number 1 (2016), 589-614.

On differentiability of implicitly defined function in semi-parametric profile likelihood estimation

Yuichi Hirose

Full-text: Open access


In this paper, we study the differentiability of implicitly defined functions which we encounter in the profile likelihood estimation of parameters in semi-parametric models. Scott and Wild (Biometrika 84 (1997) 57–71; J. Statist. Plann. Inference 96 (2001) 3–27) and Murphy and van der Vaart (J. Amer. Statist. Assoc. 95 (2000) 449–485) developed methodologies that can avoid dealing with such implicitly defined functions by parametrizing parameters in the profile likelihood and using an approximate least favorable submodel in semi-parametric models. Our result shows applicability of an alternative approach presented in Hirose (Ann. Inst. Statist. Math. 63 (2011) 1247–1275) which uses the direct expansion of the profile likelihood.

Article information

Bernoulli, Volume 22, Number 1 (2016), 589-614.

Received: August 2013
Revised: April 2014
First available in Project Euclid: 30 September 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

efficiency efficient information bound efficient score implicitly defined function profile likelihood semi-parametric model


Hirose, Yuichi. On differentiability of implicitly defined function in semi-parametric profile likelihood estimation. Bernoulli 22 (2016), no. 1, 589--614. doi:10.3150/14-BEJ669.

Export citation


  • [1] Agarwal, R.P., O’Regan, D. and Sahu, D.R. (2009). Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Topological Fixed Point Theory and Its Applications 6. New York: Springer.
  • [2] Averbukh, V.I. and Smolyanov, O.G. (1968). The various definitions of the derivative in linear topological spaces. Russian Math. Surveys 23 67.
  • [3] Bickel, P.J., Klaassen, C.A.J., Ritov, Y. and Wellner, J.A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Series in the Mathematical Sciences. Baltimore, MD: Johns Hopkins Univ. Press.
  • [4] Breslow, N.E., McNeney, B. and Wellner, J.A. (2000). Large sample theory for semiparametric regression models with two-phase outcome dependent sampling. Technical Report 381, Dept. Statistics, Univ. Washington.
  • [5] Gill, R.D. (1989). Non- and semi-parametric maximum likelihood estimators and the von Mises method. I. Scand. J. Stat. 16 97–128.
  • [6] Hirose, Y. (2011). Efficiency of profile likelihood in semi-parametric models. Ann. Inst. Statist. Math. 63 1247–1275.
  • [7] Hirose, Y. and Lee, A. (2012). Reparametrization of the least favorable submodel in semi-parametric multisample models. Bernoulli 18 586–605.
  • [8] Kolmogorov, A.N. and Fomin, S.V. (1975). Introductory Real Analysis. New York: Dover Publications, Inc.
  • [9] Kosorok, M.R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer Series in Statistics. New York: Springer.
  • [10] Murphy, S.A., Rossini, A.J. and van der Vaart, A.W. (1997). Maximum likelihood estimation in the proportional odds model. J. Amer. Statist. Assoc. 92 968–976.
  • [11] Murphy, S.A. and van der Vaart, A.W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95 449–485. With comments and a rejoinder by the authors.
  • [12] Newey, W.K. (1994). The asymptotic variance of semiparametric estimators. Econometrica 62 1349–1382.
  • [13] Scott, A.J. and Wild, C.J. (1997). Fitting regression models to case-control data by maximum likelihood. Biometrika 84 57–71.
  • [14] Scott, A.J. and Wild, C.J. (2001). Maximum likelihood for generalised case-control studies. J. Statist. Plann. Inference 96 3–27.
  • [15] Seber, G.A.F. and Lee, A.J. (2003). Linear Regression Analysis, 2nd ed. Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley.
  • [16] Shapiro, A. (1990). On concepts of directional differentiability. J. Optim. Theory Appl. 66 477–487.
  • [17] Song, R., Zhou, H. and Kosorok, M.R. (2009). A note on semiparametric efficient inference for two-stage outcome-dependent sampling with a continuous outcome. Biometrika 96 221–228.
  • [18] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics. New York: Springer.
  • [19] Weaver, M.A. and Zhou, H. (2005). An estimated likelihood method for continuous outcome regression models with outcome-dependent sampling. J. Amer. Statist. Assoc. 100 459–469.
  • [20] Zeidler, E. (1995). Applied Functional Analysis: Main Principles and Their Applications. Applied Mathematical Sciences 109. New York: Springer.