Bernoulli

  • Bernoulli
  • Volume 21, Number 1 (2015), 489-504.

Precise tail asymptotics of fixed points of the smoothing transform with general weights

D. Buraczewski, E. Damek, and J. Zienkiewicz

Full-text: Open access

Abstract

We consider solutions of the stochastic equation $R=_{d}\sum_{i=1}^{N}A_{i}R_{i}+B$, where $N>1$ is a fixed constant, $A_{i}$ are independent, identically distributed random variables and $R_{i}$ are independent copies of $R$, which are independent both from $A_{i}$’s and $B$. The hypotheses ensuring existence of solutions are well known. Moreover under a number of assumptions the main being $\mathbb{E}|A_{1}|^{\alpha }=1/N$ and $\mathbb{E}|A_{1}|^{\alpha }\log|A_{1}|>0$, the limit $\lim_{t\to\infty }t^{\alpha }\mathbb{P}[|R|>t]=K$ exists. In the present paper, we prove positivity of $K$.

Article information

Source
Bernoulli, Volume 21, Number 1 (2015), 489-504.

Dates
First available in Project Euclid: 17 March 2015

Permanent link to this document
https://projecteuclid.org/euclid.bj/1426597079

Digital Object Identifier
doi:10.3150/13-BEJ576

Mathematical Reviews number (MathSciNet)
MR3322328

Zentralblatt MATH identifier
1321.60046

Keywords
large deviations linear stochastic equation regular variation smoothing transform

Citation

Buraczewski, D.; Damek, E.; Zienkiewicz, J. Precise tail asymptotics of fixed points of the smoothing transform with general weights. Bernoulli 21 (2015), no. 1, 489--504. doi:10.3150/13-BEJ576. https://projecteuclid.org/euclid.bj/1426597079


Export citation

References

  • [1] Addario-Berry, L. and Reed, B. (2009). Minima in branching random walks. Ann. Probab. 37 1044–1079.
  • [2] Alsmeyer, G., Biggins, J.D. and Meiners, M. (2012). The functional equation of the smoothing transform. Ann. Probab. 40 2069–2105.
  • [3] Alsmeyer, G., Damek, E. and Mentemeier, S. Precise tail index of fixed points of the two-sided smoothing transform. arXiv:1206.3970v1.
  • [4] Alsmeyer, G. and Meiners, M. (2012). Fixed points of inhomogeneous smoothing transforms. J. Difference Equ. Appl. 18 1287–1304.
  • [5] Alsmeyer, G. and Meiners, M. (2013). Fixed points of the smoothing transform: Two-sided solutions. Probab. Theory Related Fields 155 165–199.
  • [6] Bassetti, F. and Ladelli, L. (2012). Self-similar solutions in one-dimensional kinetic models: A probabilistic view. Ann. Appl. Probab. 22 1928–1961.
  • [7] Buraczewski, D., Damek, E., Mentemeier, S. and Mirek, M. (2013). Heavy tailed solutions of multivariate smoothing transforms. Stochastic Process. Appl. 123 1947–1986.
  • [8] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. New York: Springer.
  • [9] Durrett, R. and Liggett, T.M. (1983). Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64 275–301.
  • [10] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II. Second Edition. New York: Wiley.
  • [11] Goldie, C.M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126–166.
  • [12] Hu, Y. and Shi, Z. (2009). Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37 742–789.
  • [13] Jelenković, P.R. and Olvera-Cravioto, M. (2010). Information ranking and power laws on trees. Adv. in Appl. Probab. 42 1057–1093.
  • [14] Jelenković, P.R. and Olvera-Cravioto, M. (2012). Implicit renewal theory and power tails on trees. Adv. in Appl. Probab. 44 528–561.
  • [15] Jelenković, P.R. and Olvera-Cravioto, M. (2012). Implicit renewal theorem for trees with general weights. Stochastic Process. Appl. 122 3209–3238.
  • [16] Neininger, R. and Rüschendorf, L. (2004). A general limit theorem for recursive algorithms and combinatorial structures. Ann. Appl. Probab. 14 378–418.
  • [17] Rösler, U. (2001). On the analysis of stochastic divide and conquer algorithms. Algorithmica 29 238–261. Average-case analysis of algorithms (Princeton, NJ, 1998).
  • [18] Volkovich, Y. and Litvak, N. (2010). Asymptotic analysis for personalized web search. Adv. in Appl. Probab. 42 577–604.