• Bernoulli
  • Volume 20, Number 4 (2014), 2039-2075.

About the posterior distribution in hidden Markov models with unknown number of states

Elisabeth Gassiat and Judith Rousseau

Full-text: Open access


We consider finite state space stationary hidden Markov models (HMMs) in the situation where the number of hidden states is unknown. We provide a frequentist asymptotic evaluation of Bayesian analysis methods. Our main result gives posterior concentration rates for the marginal densities, that is for the density of a fixed number of consecutive observations. Using conditions on the prior, we are then able to define a consistent Bayesian estimator of the number of hidden states. It is known that the likelihood ratio test statistic for overfitted HMMs has a nonstandard behaviour and is unbounded. Our conditions on the prior may be seen as a way to penalize parameters to avoid this phenomenon. Inference of parameters is a much more difficult task than inference of marginal densities, we still provide a precise description of the situation when the observations are i.i.d. and we allow for $2$ possible hidden states.

Article information

Bernoulli, Volume 20, Number 4 (2014), 2039-2075.

First available in Project Euclid: 19 September 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Bayesian statistics hidden Markov models number of components order selection posterior distribution


Gassiat, Elisabeth; Rousseau, Judith. About the posterior distribution in hidden Markov models with unknown number of states. Bernoulli 20 (2014), no. 4, 2039--2075. doi:10.3150/13-BEJ550.

Export citation


  • [1] Boys, R.J. and Henderson, D.A. (2004). A Bayesian approach to DNA sequence segmentation. Biometrics 60 573–588. With discussions and a reply by the author.
  • [2] Cappé, O., Moulines, E. and Rydén, T. (2004). Hidden Markov Models. New York: Springer.
  • [3] Chambaz, A., Garivier, A. and Gassiat, E. (2009). A minimum description length approach to hidden Markov models with Poisson and Gaussian emissions. Application to order identification. J. Statist. Plann. Inference 139 962–977.
  • [4] de Gunst, M.C.M. and Shcherbakova, O. (2008). Asymptotic behavior of Bayes estimators for hidden Markov models with application to ion channels. Math. Methods Statist. 17 342–356.
  • [5] Douc, R., Moulines, É. and Rydén, T. (2004). Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Statist. 32 2254–2304.
  • [6] Gassiat, E. (2002). Likelihood ratio inequalities with applications to various mixtures. Ann. Inst. Henri Poincaré Probab. Stat. 38 897–906.
  • [7] Gassiat, E. and Boucheron, S. (2003). Optimal error exponents in hidden Markov models order estimation. IEEE Trans. Inform. Theory 49 964–980.
  • [8] Gassiat, E. and van Handel, R. (2014). The local geometry of finite mixtures. Trans. Amer. Math. Soc. 366 1047–1072.
  • [9] Gassiat, E. and Keribin, C. (2000). The likelihood ratio test for the number of components in a mixture with Markov regime. ESAIM Probab. Statist. 4 25–52.
  • [10] Ghosal, S. and van der Vaart, A. (2007). Convergence rates of posterior distributions for non-i.i.d. observations. Ann. Statist. 35 192–223.
  • [11] Ghosh, J.K. and Ramamoorthi, R.V. (2003). Bayesian Nonparametrics. Springer Series in Statistics. New York: Springer.
  • [12] Green, P.J. and Richardson, S. (2002). Hidden Markov models and disease mapping. J. Amer. Statist. Assoc. 97 1055–1070.
  • [13] Leroux, B. and Putterman, M. (1992). Maximum-penalised-likelihood estimation for independent and Markov dependent mixture models. Biometrics 48 545–558.
  • [14] MacDonald, I.L. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-Valued Time Series. Monographs on Statistics and Applied Probability 70. London: Chapman & Hall.
  • [15] McGrory, C.A. and Titterington, D.M. (2009). Variational Bayesian analysis for hidden Markov models. Aust. N. Z. J. Stat. 51 227–244.
  • [16] Nur, D., Allingham, D., Rousseau, J., Mengersen, K.L. and McVinish, R. (2009). Bayesian hidden Markov model for DNA sequence segmentation: A prior sensitivity analysis. Comput. Statist. Data Anal. 53 1873–1882.
  • [17] Richardson, S. and Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components. J. Roy. Statist. Soc. Ser. B 59 731–792.
  • [18] Rio, E. (2000). Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes. C. R. Acad. Sci. Paris Sér. I Math. 330 905–908.
  • [19] Robert, C.P., Rydén, T. and Titterington, D.M. (2000). Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 57–75.
  • [20] Rousseau, J. and Mengersen, K. (2011). Asymptotic behaviour of the posterior distribution in overfitted mixture models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 689–710.
  • [21] Rydén, T., Terasvirta, T. and Asbrink, S. (1998). Stylized facts of daily return series and the hidden Markov model. J. Appl. Econometrics 13 217–244.
  • [22] Spezia, L. (2010). Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes. J. Time Series Anal. 31 1–11.
  • [23] Zucchini, W. and MacDonald, I.L. (2009). Hidden Markov Models for Time Series: An Introduction Using R. Monographs on Statistics and Applied Probability 110. Boca Raton, FL: CRC Press.