• Bernoulli
  • Volume 20, Number 3 (2014), 1404-1431.

Discretized normal approximation by Stein’s method

Xiao Fang

Full-text: Open access


We prove a general theorem to bound the total variation distance between the distribution of an integer valued random variable of interest and an appropriate discretized normal distribution. We apply the theorem to $2$-runs in a sequence of i.i.d. Bernoulli random variables, the number of vertices with a given degree in the Erdös–Rényi random graph, and the uniform multinomial occupancy model.

Article information

Bernoulli, Volume 20, Number 3 (2014), 1404-1431.

First available in Project Euclid: 11 June 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

discretized normal approximation exchangeable pairs local dependence size biasing Stein coupling Stein’s method


Fang, Xiao. Discretized normal approximation by Stein’s method. Bernoulli 20 (2014), no. 3, 1404--1431. doi:10.3150/13-BEJ527.

Export citation


  • [1] Barbour, A.D. and Chen, L.H.Y. (2005). An Introduction to Stein’s Method. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4. Singapore: Singapore Univ. Press.
  • [2] Barbour, A.D., Karoński, M. and Ruciński, A. (1989). A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47 125–145.
  • [3] Barbour, A.D. and Xia, A. (1999). Poisson perturbations. ESAIM Probab. Statist. 3 131–150.
  • [4] Bartroff, J. and Goldstein, L. (2013). A Berry–Esseen bound for the uniform multinomial occupancy model. Electron. J. Probab. 18 no. 27, 29.
  • [5] Berry, A.C. (1941). The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. Math. Soc. 49 122–136.
  • [6] Chen, L.H.Y., Goldstein, L. and Shao, Q.M. (2011). Normal Approximation by Stein’s Method. Probability and Its Applications (New York). Heidelberg: Springer.
  • [7] Chen, L.H.Y. and Leong, Y.K. (2010). From zero-bias to discretized normal approximation. Personal communication.
  • [8] Chen, L.H.Y. and Röllin, A. (2010). Stein couplings for normal approximation. Preprint. Available at
  • [9] Chen, L.H.Y. and Shao, Q.M. (2005). Stein’s method for normal approximation. In An Introduction to Stein’s Method (A.D. Barbour and L.H.Y. Chen, eds.). Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4 1–59. Singapore: Singapore Univ. Press.
  • [10] Diaconis, P. (1977). The distribution of leading digits and uniform distribution $\mathrm{mod}$ $1$. Ann. Probability 5 72–81.
  • [11] Esseen, C.G. (1942). On the Liapounoff limit of error in the theory of probability. Ark. Mat. Astr. Fys. 28A 1–19.
  • [12] Goldstein, L. (2013). A Berry–Esseen bound with applications to vertex degree counts in the Erdős–Rényi random graph. Ann. Appl. Probab. 23 617–636.
  • [13] Goldstein, L. and Rinott, Y. (1996). Multivariate normal approximations by Stein’s method and size bias couplings. J. Appl. Probab. 33 1–17.
  • [14] Goldstein, L. and Xia, A. (2006). Zero biasing and a discrete central limit theorem. Ann. Probab. 34 1782–1806.
  • [15] Rinott, Y. and Rotar, V. (1997). On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted $U$-statistics. Ann. Appl. Probab. 7 1080–1105.
  • [16] Röllin, A. (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli 11 1115–1128.
  • [17] Röllin, A. (2007). Translated Poisson approximation using exchangeable pair couplings. Ann. Appl. Probab. 17 1596–1614.
  • [18] Röllin, A. (2008). Symmetric and centered binomial approximation of sums of locally dependent random variables. Electron. J. Probab. 13 756–776.
  • [19] Röllin, A. and Ross, N. (2012). Local limit theorems via Landau-Kolmogorov inequalities. Preprint. Available at
  • [20] Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 583–602. Berkeley, CA: Univ. California Press.
  • [21] Stein, C. (1986). Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series 7. Hayward, CA: IMS.