• Bernoulli
  • Volume 19, Number 5A (2013), 2120-2151.

A test of significance in functional quadratic regression

Lajos Horváth and Ron Reeder

Full-text: Open access


We consider a quadratic functional regression model in which a scalar response depends on a functional predictor; the common functional linear model is a special case. We wish to test the significance of the nonlinear term in the model. We develop a testing method which is based on projecting the observations onto a suitably chosen finite dimensional space using functional principal component analysis. The asymptotic behavior of our testing procedure is established. A simulation study shows that the testing procedure has good size and power with finite sample sizes. We then apply our test to a data set provided by Tecator, which consists of near-infrared absorbance spectra and fat content of meat.

Article information

Bernoulli, Volume 19, Number 5A (2013), 2120-2151.

First available in Project Euclid: 5 November 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

absorption spectra asymptotics functional data analysis polynomial regression prediction principal component analysis


Horváth, Lajos; Reeder, Ron. A test of significance in functional quadratic regression. Bernoulli 19 (2013), no. 5A, 2120--2151. doi:10.3150/12-BEJ446.

Export citation


  • [1] Borggaard, C. and Thodberg, H. (1992). Optimal minimal neural interpretation of spectra. Analytical Chemistry 64 545–551.
  • [2] Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Lecture Notes in Statistics 149. New York: Springer.
  • [3] Cai, T.T. and Hall, P. (2006). Prediction in functional linear regression. Ann. Statist. 34 2159–2179.
  • [4] Cardot, H., Ferraty, F., Mas, A. and Sarda, P. (2003). Testing hypotheses in the functional linear model. Scand. J. Statist. 30 241–255.
  • [5] Cardot, H., Prchal, L. and Sarda, P. (2007). No effect and lack-of-fit permutation tests for functional regression. Comput. Statist. 22 371–390.
  • [6] Cardot, H. and Sarda, P. (2011). Functional linear regression. In The Oxford Handbook of Functional Data Analysis (F. Ferraty and Y. Romain, eds.) 21–46. Oxford: Oxford Univ. Press.
  • [7] Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 136–154.
  • [8] Fan, J. and Lin, S.K. (1998). Test of significance when data are curves. J. Amer. Statist. Assoc. 93 1007–1021.
  • [9] Ferraty, F. and Romain, Y., eds. (2011). The Oxford Handbook of Functional Data Analysis. Oxford: Oxford Univ. Press.
  • [10] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer Series in Statistics. New York: Springer.
  • [11] Ferraty, F., Vieu, P. and Viguier-Pla, S. (2007). Factor-based comparison of groups of curves. Comput. Statist. Data Anal. 51 4903–4910.
  • [12] Fitzhugh, H.A. (1976). Analysis of growth curves and strategies for altering their shapes. Journal of Animal Science 33 1036–1051.
  • [13] Frank, I.E. and Friedman, J.H. (1993). A statistical view of some chemometrics regression tools. Technometrics 35 109–135.
  • [14] Hall, P. and Horowitz, J.L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35 70–91.
  • [15] Horváth, L. and Kokoszka, P. (2012). Inference for functional data with applications. Preprint.
  • [16] Kirkpatrick, M. and Heckman, N. (1989). A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J. Math. Biol. 27 429–450.
  • [17] Laukaitis, A. and Račkauskas, A. (2005). Functional data analysis for clients segmentation task. European Journal of Operation Research 163 210–216.
  • [18] Li, B. and Yu, Q. (2008). Classification of functional data: A segmentation approach. Comput. Statist. Data Anal. 52 4790–4800.
  • [19] Müller, H.G. and Zhang, Y. (2005). Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories. Biometrics 61 1064–1075.
  • [20] Mas, A. and Pumo, B. (2011). Linear processes for functional data. In The Oxford Handbook of Functional Data Analysis (F. Ferraty and Y. Romain, eds.) 47–71. Oxford: Oxford Univ. Press.
  • [21] Ramsay, J.O. and Silverman, B.W. (2005). Functional Data Analysis, 2nd ed. Springer Series in Statistics. New York: Springer.
  • [22] Shen, Q. and Faraway, J. (2004). An $F$ test for linear models with functional responses. Statist. Sinica 14 1239–1257.
  • [23] Wold, S. (1993). Discussion: PLS in chemical practice. Technometrics 35 136–139.
  • [24] Yao, F. and Müller, H.G. (2010). Functional quadratic regression. Biometrika 97 49–64.
  • [25] Zhang, J.T. and Chen, J. (2007). Statistical inferences for functional data. Ann. Statist. 35 1052–1079.