• Bernoulli
  • Volume 19, Number 5A (2013), 1655-1687.

Multiplier bootstrap of tail copulas with applications

Axel Bücher and Holger Dette

Full-text: Open access


For the problem of estimating lower tail and upper tail copulas, we propose two bootstrap procedures for approximating the distribution of the corresponding empirical tail copulas. The first method uses a multiplier bootstrap of the empirical tail copula process and requires estimation of the partial derivatives of the tail copula. The second method avoids this estimation problem and uses multipliers in the two-dimensional empirical distribution function and in the estimates of the marginal distributions. For both multiplier bootstrap procedures, we prove consistency.

For these investigations, we demonstrate that the common assumption of the existence of continuous partial derivatives in the the literature on tail copula estimation is so restrictive, such that the tail copula corresponding to tail independence is the only tail copula with this property. Moreover, we are able to solve this problem and prove weak convergence of the empirical tail copula process under nonrestrictive smoothness assumptions that are satisfied for many commonly used models. These results are applied in several statistical problems, including minimum distance estimation and goodness-of-fit testing.

Article information

Bernoulli, Volume 19, Number 5A (2013), 1655-1687.

First available in Project Euclid: 5 November 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

comparison of tail copulas goodness-of-fit minimum distance estimation multiplier bootstrap stable tail dependence function tail copula


Bücher, Axel; Dette, Holger. Multiplier bootstrap of tail copulas with applications. Bernoulli 19 (2013), no. 5A, 1655--1687. doi:10.3150/12-BEJ425.

Export citation


  • [1] Bücher, A. (2011). Statistical inference for copulas and extremes. Ph.D. thesis, Ruhr-Univ. Bochum, Germany.
  • [2] Bücher, A. and Dette, H. (2010). A note on bootstrap approximations for the empirical copula process. Statist. Probab. Lett. 80 1925–1932.
  • [3] Bücher, A. and Volgushev, S. (2011). Empirical and sequential empirical copula processes under serial dependence. Preprint. Available at arXiv:1111.2778.
  • [4] Coles, S.G. and Tawn, J.A. (1994). Statistical methods for multivariate extremes: An application to structural design. J. Appl. Stat. 43 1–48.
  • [5] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Series in Operations Research and Financial Engineering. New York: Springer.
  • [6] de Haan, L., Neves, C. and Peng, L. (2008). Parametric tail copula estimation and model testing. J. Multivariate Anal. 99 1260–1275.
  • [7] Drees, H. and Huang, X. (1998). Best attainable rates of convergence for estimators of the stable tail dependence function. J. Multivariate Anal. 64 25–47.
  • [8] Drees, H. and Kaufmann, E. (1998). Selecting the optimal sample fraction in univariate extreme value estimation. Stochastic Process. Appl. 75 149–172.
  • [9] Einmahl, J.H.J., de Haan, L. and Huang, X. (1993). Estimating a multidimensional extreme-value distribution. J. Multivariate Anal. 47 35–47.
  • [10] Einmahl, J.H.J., de Haan, L. and Li, D. (2006). Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition. Ann. Statist. 34 1987–2014.
  • [11] Einmahl, J.H.J., Krajina, A. and Segers, J. (2008). A method of moments estimator of tail dependence. Bernoulli 14 1003–1026.
  • [12] Einmahl, J.H.J., Krajina, A. and Segers, J. (2011). An M-estimator for tail dependence in arbitrary dimensions. Discussion Paper 2011-013, CentER. Available at
  • [13] Embrechts, P., Lindskog, F. and McNeil, A. (2003). Modelling dependence with copulas and applications to risk management. In Handbook of Heavy Tailed Distributions in Finance (S. Rachev, ed.) 329–384. Amsterdam: Elsevier.
  • [14] Gomes, M.I. and Oliveira, O. (2001). The bootstrap methodology in statistics of extremes – choice of the optimal sample fraction. Extremes 4 331–358 (2002).
  • [15] Huang, X. (1992). Statistics of bivariate extreme values. Ph.D. thesis, Tinbergen Institute Research Series, Netherlands.
  • [16] Joe, H. (1990). Families of min-stable multivariate exponential and multivariate extreme value distributions. Statist. Probab. Lett. 9 75–81.
  • [17] Kojadinovic, I. and Yan, J. (2011). A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Stat. Comput. 21 17–30.
  • [18] Kojadinovic, I., Yan, J. and Holmes, M. (2011). Fast large-sample goodness-of-fit tests for copulas. Statist. Sinica 21 841–871.
  • [19] Kosorok, M.R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer Series in Statistics. New York: Springer.
  • [20] Malevergne, Y. and Sornette, D. (2004). How to account for extreme co-movements between individual stocks and the market. J. Risk 6 71–116.
  • [21] Peng, L. and Qi, Y. (2008). Bootstrap approximation of tail dependence function. J. Multivariate Anal. 99 1807–1824.
  • [22] Qi, Y. (1997). Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics. Acta Math. Appl. Sin. Engl. Ser. 13 167–175.
  • [23] Rémillard, B. and Scaillet, O. (2009). Testing for equality between two copulas. J. Multivariate Anal. 100 377–386.
  • [24] Schmidt, R. and Stadtmüller, U. (2006). Non-parametric estimation of tail dependence. Scand. J. Stat. 33 307–335.
  • [25] Segers, J. (2011). Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions. Preprint. Available at arXiv:1012.2133.
  • [26] Sklar, M. (1959). Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 229–231.
  • [27] Tawn, J.A. (1988). Bivariate extreme value theory: Models and estimation. Biometrika 75 397–415.
  • [28] Tiago de Oliveira, J. (1980). Bivariate extremes: Foundations and statistics. In Multivariate Analysis, V (Proc. Fifth Internat. Sympos., Univ. Pittsburgh, Pittsburgh, Pa., 1978) (P.R. Krishnaiah, ed.) 349–366. Amsterdam: North-Holland.
  • [29] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press.
  • [30] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Series in Statistics. New York: Springer.