• Bernoulli
  • Volume 19, Number 4 (2013), 1306-1326.

Probabilistic aspects of finance

Hans Föllmer and Alexander Schied

Full-text: Open access


In the past decades, advanced probabilistic methods have had significant impact on the field of finance, both in academia and in the financial industry. Conversely, financial questions have stimulated new research directions in probability. In this survey paper, we review some of these developments and point to some areas that might deserve further investigation. We start by reviewing the basics of arbitrage pricing theory, with special emphasis on incomplete markets and on the different roles played by the “real-world” probability measure and its equivalent martingale measures. We then focus on the issue of model ambiguity, also called Knightian uncertainty. We present two case studies in which it is possible to deal with Knightian uncertainty in mathematical terms. The first case study concerns the hedging of derivatives, such as variance swaps, in a strictly pathwise sense. The second one deals with capital requirements and preferences specified by convex and coherent risk measures. In the final two sections we discuss mathematical issues arising from the dramatic increase of algorithmic trading in modern financial markets.

Article information

Bernoulli, Volume 19, Number 4 (2013), 1306-1326.

First available in Project Euclid: 27 August 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

algorithmic trading arbitrage pricing theory coherent risk measure convex risk measure hedging incomplete market Knightian uncertainty market impact model model uncertainty monetary measure of risk pathwise Itô calculus price impact superhedging variance swap


Föllmer, Hans; Schied, Alexander. Probabilistic aspects of finance. Bernoulli 19 (2013), no. 4, 1306--1326. doi:10.3150/12-BEJSP05.

Export citation


  • [1] Alfonsi, A., Fruth, A. and Schied, A. (2010). Optimal execution strategies in limit order books with general shape functions. Quant. Finance 10 143–157.
  • [2] Alfonsi, A., Schied, A. and Slynko, A. (2012). Order book resilience, price manipulation, and the positive portfolio problem. SIAM J. Financial Math. 3 511–533.
  • [3] Artzner, P., Delbaen, F., Eber, J.M. and Heath, D. (1999). Coherent measures of risk. Math. Finance 9 203–228.
  • [4] Avellaneda, M. and Stoikov, S. (2008). High-frequency trading in a limit order book. Quant. Finance 8 217–224.
  • [5] Bachelier, L. (1995). Théorie de la Spéculation: Théorie Mathématique du Jeu. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Sceaux: Éditions Jacques Gabay. Reprint of the 1900 original.
  • [6] Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 5 175–1926. Translated by L. Sommer: Econometrica 22 (1954) 23–36.
  • [7] Biagini, F., Föllmer, H. and Nedelcu, S. (2011). Shifting martingale measures and the birth of a bubble as a submartingale. Unpublished manuscript.
  • [8] Bick, A. and Willinger, W. (1994). Dynamic spanning without probabilities. Stochastic Process. Appl. 50 349–374.
  • [9] Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy 637–654.
  • [10] Borkar, V.S., Konda, V.R. and Mitter, S.K. (2004). On De Finetti coherence and Kolmogorov probability. Statist. Probab. Lett. 66 417–421.
  • [11] Bovier, A., Černý, J. and Hryniv, O. (2006). The opinion game: Stock price evolution from microscopic market modeling. Int. J. Theor. Appl. Finance 9 91–111.
  • [12] Brown, H., Hobson, D. and Rogers, L.C.G. (2001). Robust hedging of barrier options. Math. Finance 11 285–314.
  • [13] Brunnermeier, M.K. and Pedersen, L.H. (2005). Predatory trading. J. Finance 60 1825–1863.
  • [14] Bühler, H. (2006). Consistent variance curve models. Finance Stoch. 10 178–203.
  • [15] Bühler, H. (2006). Volatility markets: Consistent modeling, hedging and practical implementation. Ph.D. thesis, TU Berlin.
  • [16] Carlin, B.I., Lobo, M.S. and Viswanathan, S. (2007). Episodic liquidity crises: Cooperative and predatory trading. J. Finance 65 2235–2274.
  • [17] Cassidy, J. (2009). How Markets Fail: The Logic of Economic Calamities. New York: Farrar, Straus & Giroux.
  • [18] CFTC-SEC. (2010). Findings regarding the market events of May 6, 2010. Technical report.
  • [19] Cont, R. andde Larrard, A. (2010). Linking volatility with order flow: Heavy traffic approximations and diffusion limits of order book dynamics. Unpublished manuscript.
  • [20] Cont, R. andde Larrard, A. (2013). Price dynamics in a Markovian limit order market. SIAM J. Financial Math. To appear.
  • [21] Cont, R. and Fournie, D.A. (2013). Functional Ito calculus and stochastic integral representation of martingales. Ann. Probab. 41 109–133.
  • [22] Cont, R., Kukanov, A. and Stoikov, S. (2010). The price impact of order book events. Unpublished manuscript. Available at arXiv:1011.6402.
  • [23] Cox, A.M.G. and Obłój, J. (2011). Robust hedging of double touch barrier options. SIAM J. Financial Math. 2 141–182.
  • [24] Davis, M., Obłó, J. and Raval, V. (2013). Arbitrage bounds for weighted variance swap prices. Math. Finance. To appear.
  • [25] de Finetti, B. (1990). Theory of Probability: A Critical Introductory Treatment. Vol. 1. Wiley Classics Library. Chichester: Wiley.
  • [26] de Finetti, B. (1990). Theory of Probability: A Critical Introductory Treatment. Vol. 2. Wiley Classics Library. Chichester: Wiley.
  • [27] Delbaen, F. and Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Math. Ann. 300 463–520.
  • [28] Delbaen, F. and Schachermayer, W. (1998). The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312 215–250.
  • [29] Delbaen, F. and Schachermayer, W. (2006). The Mathematics of Arbitrage. Springer Finance. Berlin: Springer.
  • [30] Dellacherie, C. (1971). Quelques commentaires sur les prolongements de capacités. In Séminaire de Probabilités, V (Univ. Strasbourg, Année Universitaire 19691970). Lecture Notes in Math. 191 77–81. Berlin: Springer.
  • [31] Deprez, O. and Gerber, H.U. (1985). On convex principles of premium calculation. Insurance Math. Econom. 4 179–189.
  • [32] Doeblin, W. (2000). Sur L’équation de Kolmogoroff, Par W. Doeblin. Paris: Éditions Elsevier. C. R. Acad. Sci. Paris Sér. I Math. 3 31 (2000), Special Issue.
  • [33] Dupire, B. (1993). Model art. Risk 6 118–124.
  • [34] Dupire, B. (2009). Functional Itô Calculus. Bloomberg Portfolio Research paper.
  • [35] Dynkin, E.B. (1992). Superdiffusions and parabolic nonlinear differential equations. Ann. Probab. 20 942–962.
  • [36] El Karoui, N., Jeanblanc-Picqué, M. and Shreve, S.E. (1998). Robustness of the Black and Scholes formula. Math. Finance 8 93–126.
  • [37] El Karoui, N. and Quenez, M.C. (1995). Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33 29–66.
  • [38] Föllmer, H. (1981). Calcul d’Itô sans probabilités. In Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French). Lecture Notes in Math. 850 143–150. Berlin: Springer.
  • [39] Föllmer, H. (2001). Probabilistic aspects of financial risk. In European Congress of Mathematics, Vol. I (Barcelona, 2000). Progr. Math. 201 21–36. Basel: Birkhäuser.
  • [40] Föllmer, H. and Gundel, A. (2006). Robust projections in the class of martingale measures. Illinois J. Math. 50 439–472 (electronic).
  • [41] Föllmer, H., Horst, U. and Kirman, A. (2005). Equilibria in financial markets with heterogeneous agents: A probabilistic perspective. J. Math. Econom. 41 123–155.
  • [42] Föllmer, H. and Kabanov, Y.M. (1998). Optional decomposition and Lagrange multipliers. Finance Stoch. 2 69–81.
  • [43] Föllmer, H. and Leukert, P. (2000). Efficient hedging: Cost versus shortfall risk. Finance Stoch. 4 117–146.
  • [44] Föllmer, H. and Schied, A. (2002). Convex measures of risk and trading constraints. Finance Stoch. 6 429–447.
  • [45] Föllmer, H. and Schied, A. (2011). Stochastic Finance: An Introduction in Discrete Time, third revised and extended ed. Berlin: de Gruyter.
  • [46] Föllmer, H., Schied, A. and Weber, S. (2009). Robust preferences and robust portfolio choice. In Mathematical Modelling and Numerical Methods in Finance (P. Ciarlet, A. Bensoussan and Q. Zhang, eds.) 15 29–88. Amsterdam: Elsevier/North-Holland.
  • [47] Föllmer, H. and Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In Applied Stochastic Analysis (London, 1989). Stochastics Monogr. 5 389–414. New York: Gordon and Breach.
  • [48] Föllmer, H. and Schweizer, M. (1993). A microeconomic approach to diffusion models for stock prices. Math. Finance 3 1–23.
  • [49] Föllmer, H. and Schweizer, M. (2010). The minimal martingale measure. In Encyclopedia of Quantitative Finance (R. Cont, ed.) 1200–1204. Hoboken, NJ: Wiley.
  • [50] Föllmer, H. and Sondermann, D. (1986). Hedging of nonredundant contingent claims. In Contributions to Mathematical Economics 205–223. Amsterdam: North-Holland.
  • [51] Frittelli, M. and Rosazza Gianin, E. (2002). Putting order in risk measures. Journal of Banking & Finance 26 1473–1486.
  • [52] Friz, P.K. and Victoir, N.B. (2010). Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics 120. Cambridge: Cambridge Univ. Press.
  • [53] Gatheral, J. (2006). The Volatility Surface. A Practitioner’s Guide. Hoboken, NJ: Wiley Finance.
  • [54] Gatheral, J. (2010). No-dynamic-arbitrage and market impact. Quant. Finance 10 749–759.
  • [55] Gatheral, J. and Schied, A. (2013). Dynamical models of market impact and algorithms for order execution. In Handbook on Systemic Risk (J.-P. Fouque and J. Langsam, eds.). Cambridge: Cambridge University Press.
  • [56] Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with nonunique prior. J. Math. Econom. 18 141–153.
  • [57] Goovaerts, M.J., De Vylder, F. and Haezendonck, J. (1984). Insurance Premiums: Theory and Applications. Amsterdam: North-Holland.
  • [58] Harrison, J.M. and Kreps, D.M. (1979). Martingales and arbitrage in multiperiod securities markets. J. Econom. Theory 20 381–408.
  • [59] Heath, D. (2000). Back to the Future. Plenary Lecture, First World Congress of the Bachelier Finance Society, Paris.
  • [60] Hellwig, M. (2009). Systemic risk in the financial sector: An analysis of the subprime-mortgage financial crisis. De Economist 157 129–207.
  • [61] Hernández-Hernández, D. and Schied, A. (2007). A control approach to robust utility maximization with logarithmic utility and time-consistent penalties. Stochastic Process. Appl. 117 980–1000.
  • [62] Hobson, D.G. (1998). Robust hedging of the lookback option. Finance Stoch. 2 329–347.
  • [63] Huber, P.J. (1981). Robust Statistics. New York: Wiley.
  • [64] Huber, P.J. and Strassen, V. (1973). Minimax tests and the Neyman–Pearson lemma for capacities. Ann. Statist. 1 251–263.
  • [65] Huberman, G. and Stanzl, W. (2004). Price manipulation and quasi-arbitrage. Econometrica 72 1247–1275.
  • [66] Jarrow, R.A., Protter, P. and Shimbo, K. (2007). Asset price bubbles in complete markets. In Advances in Mathematical Finance. Appl. Numer. Harmon. Anal. 97–121. Boston, MA: Birkhäuser.
  • [67] Jarrow, R.A., Protter, P. and Shimbo, K. (2010). Asset price bubbles in incomplete markets. Math. Finance 20 145–185.
  • [68] Kabanov, Y.M. (1997). On the FTAP of Kreps–Delbaen–Schachermayer. In Statistics and Control of Stochastic Processes (Moscow, 1995/1996) 191–203. River Edge, NJ: World Scientific.
  • [69] Karatzas, I., Lehoczky, J.P. and Shreve, S.E. (1987). Optimal portfolio and consumption decisions for a “small investor” on a finite horizon. SIAM J. Control Optim. 25 1557–1586.
  • [70] Karatzas, I. and Shreve, S.E. (1998). Methods of Mathematical Finance. Applications of Mathematics (New York) 39. New York: Springer.
  • [71] Kirman, A. (2010). The economic crisis is a crisis for economic theory. CESifo Economic Studies 56 498–535.
  • [72] Klöck, F., Schied, A. and Sun, Y. (2011). Price manipulation in a market impact model with dark pool. Unpublished manuscript.
  • [73] Knight, F. (1921). Risk, Uncertainty, and Profit. Boston: Houghton Mifflin.
  • [74] Kramkov, D. and Schachermayer, W. (1999). The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9 904–950.
  • [75] Kramkov, D. and Schachermayer, W. (2003). Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13 1504–1516.
  • [76] Kramkov, D.O. (1996). Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Related Fields 105 459–479.
  • [77] Kratz, P. and Schöneborn, T. (2010). Optimal liquidation in dark pools. Unpublished manuscript.
  • [78] Kreps, D.M. (1979). Three Essays on Capital Markets. Stanford University: Institute for Mathematical Studies in the Social Sciences. Reprinted in Revista Española de Economica 4 (1987), 111–146.
  • [79] Lehalle, C.A. (2013). Market microstructure knowledge needed to control an intra-day trading process. In Handbook on Systemic Risk (J.-P. Fouque and J. Langsam, eds.). Cambridge: Cambridge University Press.
  • [80] Lyons, T. and Qian, Z. (2002). System Control and Rough Paths. Oxford Mathematical Monographs. Oxford: Oxford Univ. Press.
  • [81] Maccheroni, F., Marinacci, M. and Rustichini, A. (2006). Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74 1447–1498.
  • [82] Merton, R.C. (1973). Theory of rational option pricing. Bell J. Econom. and Management Sci. 4 141–183.
  • [83] Mittal, H. (2008). Are you playing in a toxic dark pool? A guide to preventing information leakage. Journal of Trading 3 20–33.
  • [84] Monroe, I. (1972). On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43 1293–1311.
  • [85] Monroe, I. (1978). Processes that can be embedded in Brownian motion. Ann. Probab. 6 42–56.
  • [86] Musiela, M. and Zariphopoulou, T. (2009). Portfolio choice under dynamic investment performance criteria. Quant. Finance 9 161–170.
  • [87] Musiela, M. and Zariphopoulou, T. (2010). Stochastic partial differential equations and portfolio choice. In Contemporary Quantitative Finance 195–216. Berlin: Springer.
  • [88] Neuberger, A. (1994). The log contract. The Journal of Portfolio Management 20 74–80.
  • [89] Obizhaeva, A. and Wang, J. (2013). Optimal trading strategy and supply/demand dynamics. J. Financial Markets 16 1–32.
  • [90] Poincaré, H. (1908). Science et méthode. Revue scient. (5) 10 417–423.
  • [91] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Berlin: Springer.
  • [92] Samuelson, P.A. (1965). Proof that properly anticipated prices fluctuate randomly. Industrial Management Review 6.
  • [93] Savage, L.J. (1972). The Foundations of Statistics, revised ed. New York: Dover Publications Inc.
  • [94] Schervish, M.J., Seidenfeld, T. and Kadane, J.B. (2008). The fundamental theorems of prevision and asset pricing. Internat. J. Approx. Reason. 49 148–158.
  • [95] Schied, A. (2005). Optimal investments for robust utility functionals in complete market models. Math. Oper. Res. 30 750–764.
  • [96] Schied, A. (2007). Optimal investments for risk- and ambiguity-averse preferences: A duality approach. Finance Stoch. 11 107–129.
  • [97] Schied, A. (2013). A control problem with fuel constraint and Dawson–Watanabe superprocesses. Ann. Appl. Probab. To appear.
  • [98] Schied, A. and Stadje, M. (2007). Robustness of delta hedging for path-dependent options in local volatility models. J. Appl. Probab. 44 865–879.
  • [99] Schmeidler, D. (1986). Integral representation without additivity. Proc. Amer. Math. Soc. 97 255–261.
  • [100] Schöneborn, T. (2008). Trade execution in illiquid markets. Optimal stochastic control and multi-agent equilibria. Ph.D. thesis, TU Berlin.
  • [101] Schöneborn, T. and Schied, A. (2009). Liquidation in the face of adversity: Stealth vs. sunshine trading. Unpublished manuscript.
  • [102] Schweizer, M. (2010). Mean-variance hedging. In Encyclopedia of Quantitative Finance (R. Cont, ed.) 1177–1181. Wiley.
  • [103] Sondermann, D. (2006). Introduction to Stochastic Calculus for Finance: A New Didactic Approach. Lecture Notes in Economics and Mathematical Systems 579. Berlin: Springer.
  • [104] Stoikov, S.F. and Zariphopoulou, T. (2005). Dynamic asset allocation and consumption choice in incomplete markets. Australian Economic Papers 44 414–454.
  • [105] Turner, A. (2009). The Turner Review: A regulatory response to the global banking crisis. FSA, March.
  • [106] von Neumann, J. and Morgenstern, O. (1980). Theory of Games and Economic Behavior, 3rd ed. Princeton, NJ: Princeton Univ. Press.
  • [107] Weber, P. and Rosenow, B. (2005). Order book approach to price impact. Quant. Finance 5 357–364.
  • [108] Yan, J.A. (2002). A numeraire-free and original probability based framework for financial markets. In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) 861–871. Beijing: Higher Ed. Press.