Bernoulli

  • Bernoulli
  • Volume 19, Number 4 (2013), 1294-1305.

Some things we’ve learned (about Markov chain Monte Carlo)

Persi Diaconis

Full-text: Open access

Abstract

This paper offers a personal review of some things we’ve learned about rates of convergence of Markov chains to their stationary distributions. The main topic is ways of speeding up diffusive behavior. It also points to open problems and how much more there is to do.

Article information

Source
Bernoulli, Volume 19, Number 4 (2013), 1294-1305.

Dates
First available in Project Euclid: 27 August 2013

Permanent link to this document
https://projecteuclid.org/euclid.bj/1377612852

Digital Object Identifier
doi:10.3150/12-BEJSP09

Mathematical Reviews number (MathSciNet)
MR3102552

Zentralblatt MATH identifier
06216077

Keywords
Markov chains nonreversible chains rates of convergence

Citation

Diaconis, Persi. Some things we’ve learned (about Markov chain Monte Carlo). Bernoulli 19 (2013), no. 4, 1294--1305. doi:10.3150/12-BEJSP09. https://projecteuclid.org/euclid.bj/1377612852


Export citation

References

  • [1] Aldous, D. and Fill, J. (2002). Reversible Markov chains and random walks on graphs. Monograph.
  • [2] Andersen, H.C. and Diaconis, P. (2007). Hit and run as a unifying device. J. Soc. Fr. Stat. & Rev. Stat. Appl. 148 5–28.
  • [3] Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G. (2000). Sur les Inégalités de Sobolev Logarithmiques. Panoramas et Synthèses [Panoramas and Syntheses] 10. Paris: Société Mathématique de France.
  • [4] Babai, L., Beals, R. and Seress, Á. (2004). On the diameter of the symmetric group: Polynomial bounds. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms 1108–1112 (electronic). New York: ACM.
  • [5] Baik, J., Deift, P. and Johansson, K. (1999). On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 1119–1178.
  • [6] Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford Studies in Probability 2. New York: The Clarendon Press Oxford Univ. Press.
  • [7] Bayer, D. and Diaconis, P. (1992). Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2 294–313.
  • [8] Benjamini, I., Berger, N., Hoffman, C. and Mossel, E. (2005). Mixing times of the biased card shuffling and the asymmetric exclusion process. Trans. Amer. Math. Soc. 357 3013–3029 (electronic).
  • [9] Berestycki, N., Schramm, O. and Zeitouni, O. (2011). Mixing times for random $k$-cycles and coalescence-fragmentation chains. Ann. Probab. 39 1815–1843.
  • [10] Bernard, E.P. and Krauth, W. (2012). Event-driven Monte Carlo algorithm for general potentials. Phys. Rev. E. To appear.
  • [11] Bhakta, P., Miracle, S., Randall, D. andPascoe Streib, A. (2012). Mixing times of self-organizing lists and biased permutations. Available at arXiv:1204.3239.
  • [12] Bormashenko, O. (2011). A coupling argument for the random transposition walk. Available at arXiv:1109.3915.
  • [13] Chatterjee, S., Diaconis, P. and Meckes, E. (2005). Exchangeable pairs and Poisson approximation. Probab. Surv. 2 64–106.
  • [14] Chen, F., Lovász, L. and Pak, I. (1999). Lifting Markov chains to speed up mixing. In Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999) 275–281 (electronic). New York: ACM.
  • [15] Chung, F.R.K. (1989). Diameters and eigenvalues. J. Amer. Math. Soc. 2 187–196.
  • [16] Chung, F.R.K., Diaconis, P. and Graham, R.L. (1987). Random walks arising in random number generation. Ann. Probab. 15 1148–1165.
  • [17] Diaconis, P. (1988). Applications of noncommutative Fourier analysis to probability problems. In École D’Été de Probabilités de Saint-Flour XV–XVII, 198587. Lecture Notes in Math. 1362 51–100. Berlin: Springer.
  • [18] Diaconis, P. (1991). Finite Fourier methods: Access to tools. In Probabilistic Combinatorics and Its Applications (San Francisco, CA, 1991). Proc. Sympos. Appl. Math. 44 171–194. Providence, RI: Amer. Math. Soc.
  • [19] Diaconis, P. (2009). The Markov chain Monte Carlo revolution. Bull. Amer. Math. Soc. (N.S.) 46 179–205.
  • [20] Diaconis, P. and Gangolli, A. (1995). Rectangular arrays with fixed margins. In Discrete Probability and Algorithms (Minneapolis, MN, 1993). IMA Vol. Math. Appl. 72 15–41. New York: Springer.
  • [21] Diaconis, P. and Graham, R. (1992). An affine walk on the hypercube. J. Comput. Appl. Math. 41 215–235.
  • [22] Diaconis, P., Holmes, S. and Neal, R.M. (2000). Analysis of a nonreversible Markov chain sampler. Ann. Appl. Probab. 10 726–752.
  • [23] Diaconis, P., Lebeau, G. and Michel, L. (2011). Geometric analysis for the metropolis algorithm on Lipschitz domains. Invent. Math. 185 239–281.
  • [24] Diaconis, P. and Miclo, L. (2012). On the spectral analysis of second-order Markov chains. Unpublished manuscript.
  • [25] Diaconis, P. and Ram, A. (2000). Analysis of systematic scan Metropolis algorithms using Iwahori–Hecke algebra techniques. Michigan Math. J. 48 157–190. Dedicated to William Fulton on the occasion of his 60th birthday.
  • [26] Diaconis, P. and Saloff-Coste, L. (1993). Comparison techniques for random walk on finite groups. Ann. Probab. 21 2131–2156.
  • [27] Diaconis, P. and Saloff-Coste, L. (1996). Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 695–750.
  • [28] Diaconis, P. and Saloff-Coste, L. (1996). Nash inequalities for finite Markov chains. J. Theoret. Probab. 9 459–510.
  • [29] Diaconis, P. and Shahshahani, M. (1981). Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete 57 159–179.
  • [30] Diaconis, P. and Sturmfels, B. (1998). Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26 363–397.
  • [31] Duane, S., Kennedy, A., Pendleton, B. and Roweth, D. (1987). Hybrid Monte Carlo. Phys. Lett. B 195 216–222.
  • [32] Dyer, M., Goldberg, L.A. and Jerrum, M. (2008). Dobrushin conditions and systematic scan. Combin. Probab. Comput. 17 761–779.
  • [33] Dyer, M., Goldberg, L.A., Jerrum, M. and Martin, R. (2006). Markov chain comparison. Probab. Surv. 3 89–111.
  • [34] Fulman, J. (2000). Affine shuffles, shuffles with cuts, the Whitehouse module, and patience sorting. J. Algebra 231 614–639.
  • [35] Gade, K.K. and Overton, M.L. (2007). Optimizing the asymptotic convergence rate of the Diaconis–Holmes–Neal sampler. Adv. in Appl. Math. 38 382–403.
  • [36] Gibbs, A. and Su, F. (2002). On choosing and bounding probability metrics. Int. Statist. Rev. 70 419–435.
  • [37] Hildebrand, M. (2005). A survey of results on random random walks on finite groups. Probab. Surv. 2 33–63.
  • [38] Hildebrand, M. (2009). A lower bound for the Chung–Diaconis–Graham random process. Proc. Amer. Math. Soc. 137 1479–1487.
  • [39] Hildebrand, M. and McCollum, J. (2008). Generating random vectors in $(\mathbb{Z}/p\mathbb{Z})^{d}$ via an affine random process. J. Theoret. Probab. 21 802–811.
  • [40] Jones, G.L. and Hobert, J.P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312–334.
  • [41] Levin, D.A., Peres, Y. and Wilmer, E.L. (2009). Markov Chains and Mixing Times. Providence, RI: Amer. Math. Soc. With a chapter by James G. Propp and David B. Wilson.
  • [42] Martinelli, F. (2004). Relaxation times of Markov chains in statistical mechanics and combinatorial structures. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 175–262. Berlin: Springer.
  • [43] Montenegro, R. and Tetali, P. (2006). Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci. 1 237–354.
  • [44] Neal, R.M. (2004). Improving asymptotic variance of MCMC estimators: Non-reversible chains are better. Technical report, Dept. of Statistics, University of Toronto. Available at http://www.cs.toronto.edu/~radford/ftp/asymvar.pdf.
  • [45] Neal, R.M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC Handb. Mod. Stat. Methods 113–162. Boca Raton, FL: CRC Press.
  • [46] Peres, Y. and Winkler, P. (2011). Can extra updates delay mixing? Available at arXiv:1112.0603.
  • [47] Rosenthal, J.S. (2002). Quantitative convergence rates of Markov chains: A simple account. Electron. Commun. Probab. 7 123–128 (electronic).
  • [48] Saloff-Coste, L. (1997). Lectures on finite Markov chains. In Lectures on Probability Theory and Statistics (Saint-Flour, 1996). Lecture Notes in Math. 1665 301–413. Berlin: Springer.
  • [49] Saloff-Coste, L. (2004). Random walks on finite groups. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 263–346. Berlin: Springer.
  • [50] Wilson, D.B. (1997). Random random walks on $\textbf{Z}^{d}_{2}$. Probab. Theory Related Fields 108 441–457.