• Bernoulli
  • Volume 19, Number 2 (2013), 599-609.

Parisian ruin probability for spectrally negative Lévy processes

Ronnie Loeffen, Irmina Czarna, and Zbigniew Palmowski

Full-text: Open access


In this note we give, for a spectrally negative Lévy process, a compact formula for the Parisian ruin probability, which is defined by the probability that the process exhibits an excursion below zero, with a length that exceeds a certain fixed period $r$. The formula involves only the scale function of the spectrally negative Lévy process and the distribution of the process at time $r$.

Article information

Bernoulli, Volume 19, Number 2 (2013), 599-609.

First available in Project Euclid: 13 March 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Lévy process Parisian ruin risk process ruin probability


Loeffen, Ronnie; Czarna, Irmina; Palmowski, Zbigniew. Parisian ruin probability for spectrally negative Lévy processes. Bernoulli 19 (2013), no. 2, 599--609. doi:10.3150/11-BEJ404.

Export citation


  • [1] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge: Cambridge Univ. Press.
  • [2] Chazal, M., Kyprianou, A.E. and Patie, P. (2010). A transformation for Lévy processes with one-sided jumps and applications. Preprint. Available at arXiv:1010.3819v1 [math.PR].
  • [3] Chesney, M., Jeanblanc-Picqué, M. and Yor, M. (1997). Brownian excursions and Parisian barrier options. Adv. in Appl. Probab. 29 165–184.
  • [4] Czarna, I. and Palmowski, Z. (2011). Ruin probability with Parisian delay for a spectrally negative Lévy risk process. J. Appl. Probab. 48 984–1002.
  • [5] Dassios, A. and Wu, S. Semi-Markov model for excursions and occupation time of Markov processes. Working paper, LSE, London. Available at
  • [6] Dassios, A. and Wu, S. Parisian ruin with exponential claims. Working paper, LSE, London. Available at
  • [7] Kyprianou, A.E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Universitext. Berlin: Springer.
  • [8] Landriault, D. Renaud, J.-F. and Zhou, X. (2010). Insurance risk models with Parisian implementation delays. Preprint.
  • [9] Lebedev, N.N. (1965). Special Functions and Their Applications, revised English ed. Englewood Cliffs, NJ: Prentice-Hall Inc. Translated and edited by Richard A. Silverman.
  • [10] Loeffen, R.L. and Renaud, J.F. (2010). De Finetti’s optimal dividends problem with an affine penalty function at ruin. Insurance Math. Econom. 46 98–108.
  • [11] Schneider, W.R. (1986). Stable distributions: Fox functions representation and generalization. In Stochastic Processes in Classical and Quantum Systems (Ascona, 1985). Lecture Notes in Physics 262 497–511. Berlin: Springer.